Efecto potencial del proceso de remoción de nitrógeno sobre el δ15N de distintos taxa en el Pacífico noreste mexicano subtropical

Autores/as

  • J. Camalich
  • A. Sánchez
  • S. Aguí­ñiga
  • E. F. Balart

DOI:

https://doi.org/10.37543/oceanides.v27i2.114

Palabras clave:

Pácifico nororiental subtropical, ciclo del nitrógeno, δ15N, zona de mínimo oxígeno

Resumen

El Pacífico subtropical noroeste es una de las zonas más importantes del océano en las cuales el
nitrógeno es utilizado por procesos bacterianos que se intensifican bajo condiciones bajas de oxígeno como las que se encuentran comúnmente en las zonas de surgencia a lo largo de las costas del Pacifico. El incremento en la señal isotópica de N con respecto al nivel trófico (δ15N) es bien conocido, sin embargo su transferencia desde la fracción disuelta hasta niveles tróficos altos no ha sido estudiada a profundidad en zonas del océano en las
cuales las concentraciones de oxígeno son bajas. Los objetivos de este estudio son: 1) reportar valores de δ15N de diferentes compartimentos (abióticos y bióticos) recolectados en la zona oceánica de baja concentración de oxígeno frente a Bahía Magdalena (Pacifico subtropical noreste Mexicano); 2) comparar δ15N de diferentes
niveles tróficos con organismos análogos de regiones en las cuales la fijación de nitrógeno es el procesos dominante; esto nos permitirá evaluar la transferencia real de δ15N enriquecido en 15N a través de la red trófica hasta depredadores tope. El δ15N de los componentes abióticos y abióticos fue más alto que los reportados en regiones con una alta tasa de fijación de N. Las concentraciones de oxígeno en la zona de estudio son bajas (< 2ml/l) a profundidades superficiales (< 100m) aunque no anóxicas. No obstante, la señal de δ15N refleja desnitrificación y esta señal es transferida a lo largo de la cadena trófica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar, C., G. González-Sansón, I. Faloh & R.A. Curry. 2008. Spatial variation in stable isotopes (d13C and d15N) in marine fish along the coast of Havana City: Evidence of human impacts from harbor and river waters. J. Coast. Res., 24(5): 1281-1288. https://doi.org/10.2112/07-0832.1

Altabet, M.A., C. Pilskaln, R. Thunell, C. Pride, D. Sigman, F. Chavez, & R. Francois. 1999. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Res. Part I, 46(4): 655-679. https://doi.org/10.1016/S0967-0637(98)00084-3

Bode, A., M.T. Alvarez-Ossorio, M.E. Cunha, S. Garrido, J.B. Peleteiro, C. Porteiro, L. Valdés & M. Varela. 2007. Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Prog. Oceanogr., 74(2-3): 115-131. https://doi.org/10.1016/j.pocean.2007.04.005

Brandes, J.A., A.H. Devol, T. Yoshinari, D.A. Jayakumar & S.W.A. Naqvi. 1998. Isotopic composition of nitrate in the central Arabian Sea and eastern tropical North Pacific: A tracer for mixing and nitrogen cycles. Limnol. Oceanogr., 43(7): 1680-1689. https://doi.org/10.4319/lo.1998.43.7.1680

Camalich, J. 2011. The register of oceanographic variability on demersal fishes and top predators at the oceanic front off Bahia Magdalena México, PhD. Thesis. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, BCS, 187 p.

Carpenter, E.J. & D.G. Capone. 2008. Pelagic nitrogen fixation, 141-198. In: Capone, D.G., D.A. Bronk, M.R. Mulholland, E.J. Carpenter (Eds.), The Marine Nitrogen Cycle: Overview and Challenges. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-372522-6.00004-9

Cline, J.D. & I.R. Kaplan. 1975. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical north Pacific Ocean. Mar. Chem., 3(4): 271-299. https://doi.org/10.1016/0304-4203(75)90009-2

Codispoti, L.A., J.A. Brandes, J.P. Christensen, A.H. Devol, S.W.A. Naqvi, H.W. Paerl & T. Yoshinari. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene? Sci. Mar., 65(SUPPLEMENT 2): 85-105. https://doi.org/10.3989/scimar.2001.65s285

Corbisier, T.N., L.S.H. Soares, M.A.V. Petti, E.Y. Muto, M.H.C. Silva, J. McClelland & I. Valiela. 2006. Use of isotopic signatures to assess the food web in a tropical shallow marine ecosystem of Southeastern Brazil. Aquat. Ecol., 40(3): 381-390. https://doi.org/10.1007/s10452-006-9033-7

Devol, A.H. 2008. Denitrification including Anammox, 263-302. In: Capone, D.G., D.A. Bronk, M.R. Mulholland & E.J. Carpenter (Eds.), Nitrogen in the Marine Environment (2nd Ed.). Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-372522-6.00006-2

Garcia, H.E., R.A. Locarnini, T.P. Boyer, J.I. Antonov, O.K. Baranova, M.M. Zweng & D.R. Johnson. 2010. Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In: Levitus, S. (Ed.), World Ocean Atlas 2009. NOAA Atlas NESDIS 70, U.S. Government Printing Office, Washington, D.C.,. 344 pp.

Gilly, W.F. 2006. Horizontal and vertical migration of Dosidiscus gigas in the Gulf of California revealed by electronic tagging, 3-7. In: Olson, R.J., & J.W. Young (Eds.), The role of squid in open ocean ecosystems. Global ocean ecosystem dynamics, Honolulu, Hawaii. 116 p.

Gruber, N. & J.L. Sarmiento. 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem. Cycles, 11(2):235-266. https://doi.org/10.1029/97GB00077

Gruber, N. 2008. The Marine Nitrogen Cycle: Overview and Challenges, 1-50. In: Capone, D.G., D.A. Bronk, M.R.Mulholland, E.J. Carpenter (Eds.), Nitrogen in the Marine Environment (2nd Edition). Academic Press, San Diego.

Helly, J.J. & L.A. Levin. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I, 51(9): 1159-1168. https://doi.org/10.1016/j.dsr.2004.03.009

Hobson, K.A., A. Fisk, N. Karnovsky, M. Holst, J.M. Gagnon & M. Fortier. 2002. A stable isotope (d13C, d15N) model for the North Water food web: Implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res. Part II, 49(22-23): 5131-5150. https://doi.org/10.1016/S0967-0645(02)00182-0

Holtappels, M., G. Lavik, M.M. Jensen & M.M.M. Kuypers. 2010. 15N-labeling experiments to dissect the contributions of heterotrophic denitrification and anammox to nitrogen removal in the OMZ waters of the ocean. Methods Enzymol., 486: 223-251. https://doi.org/10.1016/B978-0-12-381294-0.00010-9

Kienast, S.S., S.E. Calvert & T.F. Pedersen. 2002. Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: Surface and subsurface paleoceanography. Paleoceanography, 17(4): 7.1-7.17. https://doi.org/10.1029/2001PA000650

Knowles, R. 1982. Denitrification. Microbiol Rev., 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982

Kuypers, M.M.M., A.O. Silekers, G. Lavik, M. Schmid, B.B. Jøorgensen, J.G. Kuenen, J.S. Sinninghe Damsté, M. Strous & M.S.M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932): 608-611. https://doi.org/10.1038/nature01472

Lam, P., G. Lavik, M.M. Jensen, J. van de Vossenberg, M. Schmid, D. Woebken, G. Dimitri, R. Amann, M.S.M. Jetten & M.M.M. Kuypers. 2009. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Nat. Acad. Sci. U.S.A., 106(12):4752-4757. https://doi.org/10.1073/pnas.0812444106

Le Loc'h, F., C. Hily & J. Grall. 2008. Benthic community and food web structure on the continental shelf of the Bay of Biscay (North Eastern Atlantic) revealed by stable isotopes analysis. J. Mar. Syst., 72(1-4): 17- 34. https://doi.org/10.1016/j.jmarsys.2007.05.011

Levin, L., D. Gutiérrez, A. Rathburn, C. Neira, J. Sellanes, P. Muñoz, V. Gallardo & M. Salamanca. 2002. Benthic processes on the Peru margin: A transect across the oxygen minimum zone during the 1997-98 El Niño. Prog. Oceanogr., 53(1): 1-27. https://doi.org/10.1016/S0079-6611(02)00022-8

Liu, K.-K. & I.R. Kaplan. 1989. The Eastern Tropical Pacific as a source of d15N-enriched nitrate in seawater off southern California. Limnol Oceanogr., 34(5): 820-830. https://doi.org/10.4319/lo.1989.34.5.0820

Logan, J.M. & M.E. Lutcavage. 2008. A comparison of carbon and nitrogen stable isotope ratios of fish tissues following lipid extractions with non-polar and traditional chloroform/methanol solvent systems. Rapid Commun. Mass Spectrom., 22(7): 1081-1086. https://doi.org/10.1002/rcm.3471

Lopez-Ibarra, G. 2008. Estructura trófica de los copépodos pelágicos en el Océano Pacífico Oriental Tropical. Ph D Thesis. Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, B.C.S., México. 107 p.

Lorrain, A., N. Savoye, L. Chauvaud, Y.M. Paulet & N. Naulet. 2003. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal. Chim. Acta, 491(2): 125-133. https://doi.org/10.1016/S0003-2670(03)00815-8

Ménard, F., A. Lorrain, M. Potier & F. Marsac. 2007. Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar. Biol., 153(2): 141-152. https://doi.org/10.1007/s00227-007-0789-7

Olson, R.J., B.N. Popp, B.S. Graham, G.A. López-Ibarra, F. Galván-Magaña, C.E. Lennert-Cody, N. Bocanegra-Castillo, N.J. Wallsgrove, E. Gier, V. Alatorre-Ramírez, L.T. Ballance & B. Fry. 2010. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog. Oceanogr., 86: 124-138. https://doi.org/10.1016/j.pocean.2010.04.026

Peterson, B.J. & B. Fry. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst., 18: 293-320. https://doi.org/10.1146/annurev.es.18.110187.001453

Petursdottir, H., A. Gislason, S. Falk-Petersen, H. Hop & J. Svavarsson. 2008. Trophic interactions of the pelagic ecosystem over the Reykjanes Ridge as evaluated by fatty acid and stable isotope analyses. Deep Sea Res. Part II, 55(1-2): 83-93. https://doi.org/10.1016/j.dsr2.2007.09.003

Rogers, A.D. 2000. The role of the oceanic oxygen minima in generating biodiversity in the deep sea. Deep Sea Res. Part II, 47(1-2):119-148. https://doi.org/10.1016/S0967-0645(99)00107-1

Schlitzer, R. 2011. Ocean Data View, http://odv. awi.de.

Sigman, D.M., M.A. Altabet, R. Michener, D.C. McCorkle, B. Fry & R.M. Holmes. 1997. Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Mar. Chem., 57(3-4): 227-242. https://doi.org/10.1016/S0304-4203(97)00009-1

Song, B. & C.R. Tobias. 2011. Molecular and stable isotope methods to detect and measure anaerobic ammonium oxidation (anammox) in aquatic ecosystems. Methods Enzymol., 496: 63-89. https://doi.org/10.1016/B978-0-12-386489-5.00003-8

Stowasser, G., R. McAllen, G.J. Pierce, M.A. Collins, C.F. Moffat, I.G. Priede & D.W. Pond. 2009. Trophic position of deep-sea fish-Assessment through fatty acid and stable isotope analyses. Deep Sea Res. Part I. 56, 812-826. https://doi.org/10.1016/j.dsr.2008.12.016

Stramma, L., G.C. Johnson, J. Sprintall & V. Mohrholz. 2008. Expanding oxygen-minimum zones in the tropical oceans. Science, 320(5876): 655-658. https://doi.org/10.1126/science.1153847

Vaquer-Sunyer, R. & C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proc. Nat. Acad. Sci. U.S.A.,105(40): 15452-15457. https://doi.org/10.1073/pnas.0803833105

Voss, M., J.W. Dippner & J.P. Montoya. 2001. Nitrogen isotope patterns in the oxygen-deficient waters of the Eastern Tropical North Pacific Ocean. Deep-Sea Res. Pt. I, 48(8):1905-1921. https://doi.org/10.1016/S0967-0637(00)00110-2

Zehr, J.P. & B.B. Ward. 2002. Nitrogen cycling in the ocean: New perspectives on processes and paradigms. Appl. Environ. Microbiol., 68(3): 1015-1024. https://doi.org/10.1128/AEM.68.3.1015-1024.2002

Zehr, J.P. 2009. New twist on nitrogen cycling in oceanic oxygen minimum zones. Proc. Nat. Acad. Sci. U.S.A., 106(12): 4575-4576. https://doi.org/10.1073/pnas.0901266106

Descargas

Publicado

2012-12-04

Cómo citar

Camalich, J., Sánchez, A., Aguí­ñiga, S., & Balart, E. F. (2012). Efecto potencial del proceso de remoción de nitrógeno sobre el δ15N de distintos taxa en el Pacífico noreste mexicano subtropical. CICIMAR Oceánides, 27(2), 25–34. https://doi.org/10.37543/oceanides.v27i2.114

Número

Sección

Artículos