Variación de peso seco, carbono, relación C/N, hidrógeno y clorofilas durante el crecimiento exponencial de especies selectas de microalgas utilizadas en acuacultura.

Autores/as

  • A. Pérez -Morales
  • A. Martí­nez -López
  • J. M. Camalich -Carpizo

DOI:

https://doi.org/10.37543/oceanides.v30i1.168

Palabras clave:

Carbono, Clorofila, Microalgas, Relación C/N, Tasa de crecimiento

Resumen

Las microalgas son comúnmente utilizadas como fuente de alimento en acuacultura, principalmente
para cultivo de moluscos y para las fases larvarias de crustáceos y peces. Los criaderos de larvas necesitan un excelente inóculo para producir microalgas de alta calidad cuando se cultivan al exterior en sistemas extensivos; esto depende principalmente de la salud de las microalgas cultivadas bajo condiciones de laboratorio como
primer paso. Por lo tanto, el objetivo de este trabajo fue evaluar variaciones de peso seco, carbono, relación C/N, hidrógeno y clorofilas como indicadores fisiológicos de la asimilación de nutrientes y tasa de crecimiento durante
el crecimiento exponencial de Isochrysis galbana, Chaetoceros calcitrans y Dunaliella tertiolecta, usando f/2 como medio de cultivo. Chaetoceros calcitrans y D. tertiolecta presentaron el mayor contenido de carbono (~30 pg cél-1). La relación C/N varió ampliamente, decreciendo gradualmente en I. galbana. La clorofila a fue la que más varió entre las tres microalgas evaluadas, en el intervalo de <0.05 a >0.25 pg cél-1. La tasa de crecimiento fue mayor en I. galbana (K’ 0.83) seguido por D. tertiolecta y C. calcitrans. Los resultados mostraron que la incorporación de nutrientes por célula cambia cuando la densidad celular se incrementa; esta información provee nuevo conocimiento sobre la fisiología de microalgas marinas y confirma que la dinámica de incorporación de nutrientes es diferente en cada especie de microalga. Por último, este estudio indicó que el uso de un solo medio de cultivo no es igualmente eficiente para todas las microalgas usadas en acuacultura, debido a que necesitan requerimientos nutricionales específicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abu-Rezq, T. S., L. Al-Musallam, J. Al-Shimmari & P. Dias. 1999. Optimum production conditions for different high-quality marine algae. Hydrobiologia, 403: 97-107. https://doi.org/10.1023/A:1003725626504

Banerjee, S., W. E. Hew, H. Khatoon, M. Shariff & M. Md.Yusoff. 2011. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr. J. Biotechnol., 10(8): 1375-1383.

Barakoni, R., S. Awal & A. Christie. 2015. Growth performance of the marine microalgae Pavlova salina and Dunaliella tertiolecta using different commercially available fertilizers in natural seawater and inland saline ground water. J. Algal Biomass Utln., 6: 15-25.

Bienfang, P. K. & P. J. Harrison. 1984. Co-variation of sinking rate and cell quota among nutrient replete marine phytoplankton. Mar. Ecol. Prog. Ser., 14: 297-300. https://doi.org/10.3354/meps014297

Brown, M. R., M. Mular, I. Miller, C. Farmer & C. Trenerry. 1999. The vitamin content of micro algae used in aquaculture. J. App. Phycol., 11:247-255. https://doi.org/10.1023/A:1008075903578

Brutemark, A., E. Lindehoff, E. Granéli & W. Granéli. 2009. Carbon isotope signature variability among cultured microalgae: Influence of species, nutrients and growth. J. Exp. Mar. Biol. Ecol., 372: 98-105. https://doi.org/10.1016/j.jembe.2009.02.013

Cloern, J. E., C. Grenz & L. Vidergar-Lucas. 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnol. Oceanogr., 40(7): 1313-1321. https://doi.org/10.4319/lo.1995.40.7.1313

Cuhel, R. L., P. B. Ortner & D. R. S. Lean. 1984. Night synthesis of protein by algae. Limnol. Oceanogr., 29(4): 731-744. https://doi.org/10.4319/lo.1984.29.4.0731

Estep, M. F. & T. C. Hoering. 1981. Stable hydrogen isotope fractionations during autotrophic and mixotrophic growth of microalgae. Plant Physiol., 67: 474-477. https://doi.org/10.1104/pp.67.3.474

Fábregas, J., M. Patiño, E. Vecino, F. Cházaro & A. Otero. 1995. Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl. Microbio. Biotech., 43: 617-621. https://doi.org/10.1007/BF00164763

Fogg, G. E. & B. Thake. 1987. Algae cultures and phytoplankton ecology. 3rd ed. The University of Wisconsin Press, Ltd. London, 320 p.

Geider, R. & J. La Roche. 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol., 37: 1-17. https://doi.org/10.1017/S0967026201003456

Gopinathan, C. P. 1986. Differential growth rates of micro-algae in various culture media. Ind. J. Fish., 33(4): 450-456.

Guillard, R. R. L. & J. H. Ryther. 1962. Studies on marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229-239. https://doi.org/10.1139/m62-029

Guillard, R. R. L. & P. E. Hargraves. 1993. Stichochrysis immobilis is a diatom, not a Chrysophyte. Phycologia 32: 234-236. https://doi.org/10.2216/i0031-8884-32-3-234.1

Jeffrey S. W. & G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants and natural phytoplankton. Biochem. Physiol. Pflanzen, 165: 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3

Kaplan, D., Z. Cohen & A. Abeliovich. 1986. Optimal growth conditions for Isochrysis galbana. Biomass, 9: 37-48. https://doi.org/10.1016/0144-4565(86)90011-9

Keller, M. D. & R. R. L. Guillard. 1985. Factors significant to marine diatom culture. In: Anderson DM, White AW, Baden DG (eds.). Toxic Dinoflagellates. Elsevier, New York, USA, pp. 113-116.

Keller, M. D., R.C. Selvin, W. Claus & R. R. L. Guillard. 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638. https://doi.org/10.1111/j.1529-8817.1987.tb04217.x

Lananan, F., A. Jusoh, N. Ali, S. S. Lam & A. Endut. 2013. Effect of Conway medium and f/2 medium on the growth of six genera of South China Sea marine microalgae. Biores. Technol., 141: 75-82. https://doi.org/10.1016/j.biortech.2013.03.006

Lourenço, S. O., E. Barbarino, J. Mancini-Filho, K. P. Schinke & E. Aidar. 2002. Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia, 41(2): 158-168. https://doi.org/10.2216/i0031-8884-41-2-158.1

Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. J. Appl. Phycol., 12: 527-534. https://doi.org/10.1023/A:1008106304417

Miquel, P. 1890. De la culture artificielle des diatomees. Diatomiste, 1: 93-99.

Okaichi, T., S. Nishio & Y. Imatomi. 1982. Collection and mass culture. 22-34, In: Japanese Fisheries Society (eds.). Toxic phytoplankton - occurrence, mode of action and toxins. Japan Fisheries Society, Tokyo, Japan.

Parsons, T. R., Y. Maita & C. M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon press, UK, 173 p.

Pérez-Morales, A. 2006. Efecto de diferentes microalgas en las tasas vitales de Euterpina acutifrons (Dana, 1848) (Copepoda: Harpacticoida) en condiciones controladas. MSc. thesis. Centro Interdisciplinario de Ciencias MarinasInstituto Politécnico Nacional. 67 p.

Raghavan, G., C. K. Haridevi & C. P. Gopinathan. 2008. Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquac. Res., 39: 1053-1058. https://doi.org/10.1111/j.1365-2109.2008.01964.x

Ríos, A. F., F. Fraga, F. F. Pérez & F. G. Figueiras. 1998. Chemical composition of phytoplankton and particulate organic matter in the Ría de Vigo (NW Spain). Sci. Mar., 62(3): 257-271. https://doi.org/10.3989/scimar.1998.62n3257

Roleda, M. Y., S. P. Slocombe, R. J. G. Leakey, J. G. Day, E. M. Bell & M. S. Stanley. 2013. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Biores. Technol., 129: 439- 449. https://doi.org/10.1016/j.biortech.2012.11.043

Roopnarain, A., S. D. Sym & V. M. Gray. 2015. Time of culture harvest affects lipid productivity of nitrogen-starved Isochrysis galbana U4 (Isochrysidales, Haptophyta). Aquaculture, 438: 12-16. https://doi.org/10.1016/j.aquaculture.2014.12.033

Sebastien, N. Y. & V. L. M. Klein. 2006. Efeito do meio Erd Schreiber no cultivo das microalgas Dunaliella salina, Tetraselmis chuii e Isochrysis galbana. Acta Sci. Biol. Sci., 28: 149-152. https://doi.org/10.4025/actascibiolsci.v28i2.1037

Sokal, R. R. & F. J. Rohlf. 1981. Biometry: The principles and practice of statistics in biological research. Freeman, W.H. and Company, New York, USA, 859 p.

Tantanasarit, C., A. J. Englande & S. Babel. 2013. Nitrogen, phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations. J. Exp. Mar. Biol. Ecol., 446: 67-75. https://doi.org/10.1016/j.jembe.2013.05.004

Timmermans, K. R., M. S. Davey, B. Van der Wagt, J. Snoek, R. J. Geider, M. J. W. Veldhuis, L. J. A. Gerringa & H. J. W. De Baar. 2001. Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Mar. Ecol. Prog. Ser., 217: 287-297. https://doi.org/10.3354/meps217287

Tompkins, J., M. M. Deville, J. G. Day & M. F. Turner. 1995. Culture collection of algae and protozoa. Catalogue of strains. Ambleside, UK, 204 p.

Descargas

Publicado

2015-06-27

Cómo citar

Pérez -Morales, A., Martí­nez -López, A., & Camalich -Carpizo, J. M. (2015). Variación de peso seco, carbono, relación C/N, hidrógeno y clorofilas durante el crecimiento exponencial de especies selectas de microalgas utilizadas en acuacultura. CICIMAR Oceánides, 30(1), 33–34. https://doi.org/10.37543/oceanides.v30i1.168

Número

Sección

Artículos