Caracterización de una nueva cepa de Dunalliela salina asilada de San Quintin, Baja California (México), productora de lípidos, pigmentos y micronutrientes

Autores/as

  • Ricardo Valencia Universidad Autónoma de Baja California
  • Ivone Giffard-Mena Universidad Autónoma de Baja California
  • Ricardo Cruz-López 2 San Diego State University. Research Scholar. 3 Centro de Investigación Cientí­fica y de Educación Superior de Ensenada
  • Ernesto Garcí­a-Mendoza Centro de Investigación Cientí­fica y de Educación Superior de Ensenada
  • José Luis Stephano-Hornedo Universidad Autónoma de Baja California

DOI:

https://doi.org/10.37543/oceanides.v33i2.212

Palabras clave:

Dunaliella salina, Chlorophyta, pigmentos, pozas de sal marina, desafíos de salinidad

Resumen

Algunas microalgas son reconocidas por producir pigmentos y otros metabolitos con importancia
biotecnológica, en particular, Dunaliella salina es una de las más notables. Este tipo de compuestos se usan como alimento y tienen potencial industrial. La industria del pigmento tiene un valor de mercado millonario, siendo el β-caroteno uno de los más rentables. En este estudio se describen la morfología, la dinámica de crecimiento, composición proximal, composición de nutrientes y contenido de pigmentos de una cepa de Dunaliella salina de San Quintín, BC, México, recientemente aislada. La identificación de la especie se corroboró mediante técnicas moleculares. Se cultivó D. salina bajo diferentes condiciones de salinidad y luz, con el objetivo de resaltar sus propiedades para las industrias biotecnológica y biomédica. D. salina SQ alcanzó las densidades más altas (1.07- 1.25 células mL-1 x106) a salinidades bajas (NaCl 100 y 500 mM) en un régimen de luz continua. La neoxantina
(Neo) y la violaxantina (Viol) fueron los pigmentos más abundantes en 500 mM NaCl y un ciclo de luz: oscuridad 18: 6 h. Además, esta peculiar cepa produce otros compuestos con alto valor industrial.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ricardo Valencia, Universidad Autónoma de Baja California

Facultad de Ciencias Marinas, Posgrado en Ecologí­a Molecular y Biotecnoloí­ga.

Ivone Giffard-Mena, Universidad Autónoma de Baja California

Facultad de Ciencias Marinas, Laboratorio de Ecologí­a Molecular. Professor-Researcher.

Ricardo Cruz-López, 2 San Diego State University. Research Scholar. 3 Centro de Investigación Cientí­fica y de Educación Superior de Ensenada

2 Chemistry and Biochemistry Department

3 Departamento de Oceanografí­a biológica

Ernesto Garcí­a-Mendoza, Centro de Investigación Cientí­fica y de Educación Superior de Ensenada

Departamento de Oceanografí­a biológica. Laboratorio de Biologia Algal/FICOTOX, Investigador Titular C.

José Luis Stephano-Hornedo, Universidad Autónoma de Baja California

Facultad de Ciencias, Laboratorio Meredith Gould. Professor-Researcher.

Citas

AOAC, 1990. Official methods of analysis 15th Ed, in Association of official analytical chemists, Washington, DC, USA.

Abomohra, A.E.F., W. Jin, R. Tu, S. F. Han, M. Eid & H. Eladel. 2016. Microalgal biomass production as a sustainable feedstock for biodiesel: Current status and perspectives. Renewable and Sustainable Energy Reviews, 64: 596-606. https://doi.org/10.1016/j.rser.2016.06.056

Almazán-Becerril, A. & E. García-Mendoza. 2008. Maximum efficiency of charge separation of photosystem II of the phytoplankton community in the Eastern Tropical North Pacific off México: A nutrient stress diagnostic tool ? Ciencias Marinas, 34(1): 29-43. https://doi.org/10.7773/cm.v34i1.1151

Andersen, A.R. 2005. Algal Culturing Techniques. (Andersen A. Robert, Ed.). 589 p.

Assunção, P., R. Jaén-Molina, J. Caujapé-Castells, M. Wolf, M. A. Buchheim, A. de la Jara & H. Mendoza. 2013. Phylogenetic analysis of ITS2 sequences suggests the taxonomic re-structuring of Dunaliella viridis (Chlorophyceae, Dunaliellales). Phycological Research, 61(2): 81-88. https://doi.org/10.1111/pre.12003

Barzegari, A., M. A. Hejazi, N. Hosseinzadeh, S. Eslami, E. Mehdizadeh Aghdam & M. S. Hejazi. 2010. Dunaliella as an attractive candidate for molecular farming. Molecular Biology Reports, 37(7): 3427-3430. https://doi.org/10.1007/s11033-009-9933-4

Becker E.W. 2007. Micro-algae as a source of protein. Biotechnology Advances, 25(2): 207-210. https://doi.org/10.1016/j.biotechadv.2006.11.002

Belghith T., K. Athmouni, J. Elloumi, W. Guermazi, T. Stoeck & H. Ayadi. 2015. Biochemical Biomarkers in the Halophilic Nanophytoplankton: Dunaliella salina Isolated from the Saline of Sfax (Tunisia). Arabian Journal for Science and Engineering, 17-24. https://doi.org/10.1007/s13369-015-1808-5

Ben-Amotz, A. 1993. Production of B-Carotene and Vitamins by the Halotolerant Alga Dunaliella. 411-417, In: Marine Biotechnology (Vol. 1). New York. https://doi.org/10.1007/978-1-4899-2391-2_11

Ben-Amotz, A. & M. Avron. 1983. On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. Plant Physiology, 72(3): 593-597. https://doi.org/10.1104/pp.72.3.593

Benavente-Valdés, J. R., C. Aguilar, J. C. Contreras-Esquivel, A. Méndez-Zavala & J. Montañez. 2016. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophyceae species. Biotechnology Reports, 10: 117-125. https://doi.org/10.1016/j.btre.2016.04.001

Bligh E. G. & W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and hysiology, 37: 911-917. https://doi.org/10.1139/y59-099

Borowitzka, M. A. 1990. Technical resource papers: The Mass Culture of Dunaliella salina. Retrieved from http://www.fao.org/docrep/ field/003/ab728e/ab728e06.htm

Borowitzka, M. A. 1988. Algal Growth Media and Sources. 456-465, In: Micro-algal Biotechnology. Retrieved from http://www.fao.org/docrep/ field/003/ab728e/ab728e06.htm

Borowitzka, M. A. 2013. High-value products from microalgae-their development and commercialization. Journal of Applied Phycology, 25(3): 743-756. https://doi.org/10.1007/s10811-013-9983-9

Borowitzka, M. A. & C. J. Silva. 2007. The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. Journal of Applied Phycology, 19(5): 567-590. https://doi.org/10.1007/s10811-007-9171-x

Cade-Menun, B. J. & A. Paytan. 2010. Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Marine Chemistry, 121: 27-36. https://doi.org/10.1016/j.marchem.2010.03.002

Cadoret, J. P., M. Garnier & B. Saint-Jean. 2012. Microalgae, Functional Genomics and Biotechnology. Advances in Botanical Research (Vol. 64).

Cai, M., L.H. He & T.Y. Yu. 2013. Molecular Clone and Expression of a NAD+-Dependent Glycerol-3-Phosphate Dehydrogenase Isozyme Gene from the Halotolerant alga Dunaliella salina. PLoS ONE, 8(4): 1-8. https://doi.org/10.1371/journal.pone.0062287

Chen, Y., T. Xu, R. K. Vijay, C. Xu & S. Vaidyanathan. 2015. Influence of nutrient status on the accumulation of biomass and lipid in Nannochloropsis salina and Dunaliella salina, Energy Conversion and Management. Elsevier Ltd, 106 p. https://doi.org/10.1016/j.enconman.2015.09.025

Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers & F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28: 350-356. https://doi.org/10.1021/ac60111a017

Dufossé, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. C. Murthy & G.A. Ravishankar. 2005. Microorganisms and microalgae as sources of pigments for food use: A scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9): 389-406. https://doi.org/10.1016/j.tifs.2005.02.006

Farhat, N., M. Rabhi, H. Falleh, J. Jouini, C. Abdelly & A. Smaoui. 2011. Optimization of salt concentrations for a higher carotenoid production in Dunaliella salina (Chlorophyceae). Journal of Phycology, 47(5): 1072-1077. https://doi.org/10.1111/j.1529-8817.2011.01036.x

Fox, J. 2017. Using the R Commander. A Point-and Click Interface for R. CRC Press. CHAPMAN & HALL, USA.

Frank, H. A. & R. J. Cogdell. 1996. Carotenoids in Photosynthesis. Photochemistry and Photobiology. Wiley Online Library. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x

Ganesan, V. S. H. 2014. Biomass from Microalgae: An Overview. Oceanography: Open Access, 2(1): 1-7. https://doi.org/10.4172/2332-2632.1000118

Guevara, M., R. Pinto, J. Villarroel, E. Hernández, R. Díaz & B.R.C. Gotera. 2016. Influencia de la salinidad y la irradiancia sobre el crecimiento y composición bioquímica de una nueva cepa de Dunaliella salina, proveniente de las salinas de Araya, Venezuela. Saber, 28: 494-501.

Goltekar, R.C., K.P. Krishnan, M.J.B.D. De Souza, A.L. Paropkari & P.A. Loka Bharathi. 2006. Effect of carbon source concentration and culture duration on retrievability of bacteria from certain estuarine, coastal and offshore areas around eninsular India. Current Science, 90(1): 103-106.

Gonçalves, A. L., M. Simões & J.C.M. Pires. 2014. The effect of light supply on microalgal growth, CO 2 uptake and nutrient removal from wastewater. Energy Convers Manage, 85: 530-6. https://doi.org/10.1016/j.enconman.2014.05.085

Griffiths, M. J., R. P. van Hille & S.T. Harrison. 2012. Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. Journal of Applyed Phycology, 24: 989-1001. https://doi.org/10.1007/s10811-011-9723-y

Guo-Zhong, J., L. Yu-Min, N. Xiang-Li & X. LeXun. 2005. The actin gene promoter-driven bar as a dominant selectable marker for nuclear transformation of Dunaliella salina. Acta Genetica Sinica, 32(4): 424-433.

Heukelem, L. Van & C. S. Thomas. 2001. Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments, Journal of Chromatography A, 910: 31-49. https://doi.org/10.1016/S0378-4347(00)00603-4

Jackson, M. L. 1973. Soil Chemical Analysis. Prentice-Hall of India Pvt. Ltd., New Delhi, India.

Jayappriyan, K. R., R. Rajkumar, P. R. Kannan, S. Divya & R. Rengasamy. 2010. Significance of 18S rDNA specific primers in the identification of genus Dunaliella, Journal of Experimental Sciences, 1(1): 27-31.

Johnson, M. K., E. J. Johnson, R. D. MacElroy, H. L. Speer & B. S. Bruff. 1968. Effects of salts on the halophilic alga Dunaliella viridis. Journal of Bacteriology, 95(4): 1461-1468. https://doi.org/10.1128/JB.95.4.1461-1468.1968

Kadkhodaei, S., A.B. Ariff & H.R. Memari. 2011. Construction of an expression vector for production of tissue plasminogen activator (t-PA) in a transgenic microalgae bioreactor. International Conference on Biomedical Engineering and Technology, 11: 193-196.

Kotake-Nara, E., M. Kushiro, H. Zhang, T. Sugawara, K. Miyashita & A. Nagao. 2001. Carotenoids affect proliferation of human prostate cancer cells. The Journal of Nutrition, 131(12): 3303-3306. https://doi.org/10.1093/jn/131.12.3303

Lamers, P.P., M. Janssen, R.C.H. De Vos, R.J. Bino & R.H. Wijffels. 2008. Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology, 26(11): 631-638. https://doi.org/10.1016/j.tibtech.2008.07.002

Loeblich, L. 1982. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). Journal of the Marine Biological Association of the UK, 62: 493-508. https://doi.org/10.1017/S0025315400019706

Lopez, H., D. Magdaleno & J. Stephano. 2017. The complete chloroplast genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA Part B, 2(1): 225-226. https://doi.org/10.1080/23802359.2017.1310610

Lowry, O. H., H.J. Rosebrough, A.L. Farr & R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6

Lundquist, T.J., I.C. Woertz, N.W.T. Quinn & J.R. Benemann. 2010. A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy, (October), 1-14. https://doi.org/10.1556/1848.2015.6.1.6

Magdaleno, D., H. Lopez & J. Stephano 2017. The complete mitochondrial genome of the green microalgae Dunaliella salina strain SQ. Mitochondrial DNA Part B, 2(1): 311-312. https://doi.org/10.1080/23802359.2017.1331331

Niyogi, K.K., O. Bjorkman & A. Grossman R. 1997. The roles of specific xanthophylls in photoprotection. Proceedings of the National Academy of Sciences, 94(25): 14162-14167. https://doi.org/10.1073/pnas.94.25.14162

Olmos-Soto, J., J. Paniagua-Michel, R. Contreras & L. Trujillo. 2002. Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnology Letters, 24(5): 365-369. https://doi.org/10.1023/A:1014516920887

Olmos-Soto, J., L. Ochoa, J. Paniagua-Michel & R. Contreras. 2009. DNA fingerprinting differentiation between beta-carotene hyperproducer strains of Dunaliella from around the world. Saline Systems, 5: 5. https://doi.org/10.1186/1746-1448-5-5

Olmos-Soto, J., J. Paniagua & R. Contreras. 2000. Molecular identification of Dunaliella sp. utilizing the 18S rDNA gene. Letters in Applied Microbiology, 30(1): 80-84. https://doi.org/10.1046/j.1472-765x.2000.00672.x

Oren, A. 2005. A hundred years of Dunaliella research: 1905-2005. Saline Systems, 1: 2. https://doi.org/10.1186/1746-1448-1-2

Oren, A. 2010. Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31: 825-834. https://doi.org/10.1080/09593330903370026

Pancha, I., K. Chokshi, T. Ghosh, C. Paliwal, R. Maurya & S. Mishra. 2015. Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 193: 315-323. https://doi.org/10.1016/j.biortech.2015.06.107

Paniagua-Michel, J., Capa-Robles W., Olmos-Soto J. & Gutierrez-Millan L.E. 2009. The carotenogenesis pathway via the isoprenoid-beta-carotene interference approach in a new strain of Dunaliella salina isolated from Baja California México. Marine Drugs, 7(1): 45-56. https://doi.org/10.3390/md7010045

Pasquet, V., P. Morisset, S. Ihammouine, A. Chepied, L. Aumailley, J. B. Berard, B. Serive, R. Kaas, I. Lanneluc, V. Thiery, M. Lafferriere, J. M. Piot, T. Patrice, J.P. Cadoret & L. Picot. 2011. Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Marine Drugs, 9(5): 819-831. https://doi.org/10.3390/md9050819

Pisal, D. S. & S.S. Lele. 2005. Carotenoid production from microalga, Dunaliella salina. Indian Journal of Biotechnology, 4(4): 476-483.

Pulz, O. & W. Gross. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6): 635-648. https://doi.org/10.1007/s00253-004-1647-x

Rappé, M.S., S.A. Connon, K.L. Vergin & S.J. Giovannoni. 2002. Cultivation of the ubiquitous SAR 11 marine bacterioplankton clade. Nature, 418: 630-3. https://doi.org/10.1038/nature00917

Reber, L.A. & M.M. Wallace, 1937. Chlorides and Bromides. Analytical Edition, 167(1): 1937.

Richmond, A. & Q. Hu 2013. Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Second Edition. Wiley-Blackwell. ISBN 9780470673898, 9781118567166. 726 p. https://doi.org/10.1002/9781118567166

Sambrook, J., E.F. Fritsch & T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press.

Smith, D.R., R.W. Lee, J.C. Cushman, J.K. Magnuson, D. Tran. & J.E. Polle. 2010. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biology, 10: 83. https://doi.org/10.1186/1471-2229-10-83

Soontornchaiboon, W., S.S. Joo & S.M. Kim. 2012. Anti-inflammatory Effects of Violaxanthin Isolated from Microalga Chlorella ellipsoidea in RAW 264.7 Macrophages. Biological and Pharmaceutical Bulletin, 35: 1137-1144. https://doi.org/10.1248/bpb.b12-00187

Speight, J.G. 2013. The chemistry and technology of coal. Fuel and Energy Abstracts, 36(3): 835. https://doi.org/10.1016/0140-6701(95)80007-7

Thaipratum, R., A. Melis, J. Svasti & K. Yokthongwattana. 2009. Analysis of non- photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. Journal of Plant Research, 122: 465-476. https://doi.org/10.1007/s10265-009-0229-5

Tokuşoglu, O. & M.K. üUnal. 2003. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrysis galbana. Journal of Food Science, 68(4): 1144-1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x

Walkley, A. & I.A. Black. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63:251-263. https://doi.org/10.1097/00010694-194704000-00001

Wen, Z.Y. & F. Chen, 2003. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21(4): 273-294. https://doi.org/10.1016/S0734-9750(03)00051-X

Widowati, W. & A. Asnah. 2014. Biochar effect at potassium fertilizer and dosage leaching potassium for two-corn planting season. AGRIVITA Journal of Agricultural Science, 36(1): 65-71. Retrieved from https://doi.org/10.17503/Agrivita-2014-36-1-p065-071

Wilcox, L.W., L.A. Lewis, P. A. Fuerst & G.L. Floyd. 1992. Group I introns within the nuclear-encoded small-subunit rRNA gene of three green algae. Molecular Biology and Evolution, 9(6): 1103-18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1435237.

Yaakob, Z., E. Ali, A. Zainal, M. Mohamad. & M. Takriff. 2014. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 21(1): 6. https://doi.org/10.1186/2241-5793-21-6

Zhang, Z., S. Schwartz, L. Wagner & W. Miller. 2000. A greedy algorithm for a aligning DNA sequences. Journal of Computational Biology, 7(1-2): 203-214. https://doi.org/10.1089/10665270050081478

Descargas

Publicado

2018-08-13

Cómo citar

Valencia, R., Giffard-Mena, I., Cruz-López, R., Garcí­a-Mendoza, E., & Stephano-Hornedo, J. L. (2018). Caracterización de una nueva cepa de Dunalliela salina asilada de San Quintin, Baja California (México), productora de lípidos, pigmentos y micronutrientes. CICIMAR Oceánides, 33(2), 1–11. https://doi.org/10.37543/oceanides.v33i2.212

Número

Sección

Artículos