Bioeconomics of technological interdependencies in a sequential shrimp fishery: optimal size of the industrial fleet in southern Gulf of California

Autores/as

  • Fernando Aranceta-Garza CIBNOR
  • Juan Carlos Seijo
  • Francisco Vergara-Solana

DOI:

https://doi.org/10.37543/oceanides.v36i1-2.254

Palabras clave:

Pesquería de pesquera escala, manejo de pesquería secuencial, Sinaloa, camarón blanco, Litopenaeus vannamei

Resumen

Se analizaron las externalidades secuenciales bioeconómicas en una pesquería de camarón blanco (Litopenaeus vannamei) durante la temporada 2014-2015 en Sinaloa sur, evaluando el tamaño óptimo de la flota industrial (barcos) dada una flota de pequeña escala (SSF: cayucos) sobredimensionada. Para esto, se construyó un modelo bioeconómico estructurado por edades con mortalidad natural y capturabilidad variables por edad, y con un modelo de retraso distribuido representando la estacionalidad del reclutamiento. Asimismo, para el área se incorporó el efecto reproductivo de la temperatura superficial del mar (SST) estacional. El tamaño de SSF fue representando bajo su status quo y el tamaño de la flota industrial varío en -25%, -50% and -70% (Maximización del NPV en flota industrial). El modelo mostró las interdependencias tecnológicas de dos flotas que compiten por una especie y sus respectivas externalidades. La pesquería bajo statu quo mostró una biomasa sobreexplotada (0.27, <MSY); flotas sobrecapitalizadas, especialmente para SSF, reflejando una renta del recurso descontada (NPV) disminuida, especialmente para los cayucos ($761 dólares USD temporada-1). La reducción industrial provocó una mejora progresiva de todas las variables bioeconómicas. La maximización del NPV de la flota industrial mostró una reducción del ~70% de barcos para superar las externalidades negativas causadas por el estado de la SSF. Esto resultó en beneficios máximos en la biomasa (+27%) y en NPV para los barcos (+700%) que permanecieran en la pesquería, incluyendo externalidades positivas marginales para SSF (4%). Sin embargo, la pesquería aún no alcanzó niveles MSY (0.34). Dadas las condiciones actuales de la pesquería secuencial de camarón (sobrecapitalizada, sobrexplotada y dificultades controlando SSF), la limitación del esfuerzo industrial para mejorar el estado actual puede ser una solución viable para mejorar el despeño pesquero. Sin embargo, para alcanzar niveles sustentables se necesita explorar escenarios de manejo que incluyan a SSF.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fernando Aranceta-Garza, CIBNOR

CIBNOR

Programa de Ecologí­a Pesquera

Programa Interinstitucional de Bioeconomí­a Pesquera y Acuí­cola

Citas

Almendarez-Hernández, L. C., G. Ponce-Díaz, D. Lluch-Belda, P. del Monte-Luna & R. Saldívar-Lucio. 2015. Risk assessment and uncertainty of the shrimp trawl fishery in the Gulf of California considering environmental variability. Lat. Am. J. Aquat. Res., 43(4): 651-661.

Anderson, L. G., & J. C. Seijo. 2010. Bioeconomics of fisheries management, First Edition. John Wiley & Sons., 305 p.

Aragón-Noriega, E. A. & E. Alcántara-Razo. 2005. Influence of sea surface temperature on reproductive period and size at maturity of brown shrimp (Farfantepenaeus californiensis) in the Gulf of California. Mar. Biol., 146(2): 373-379.

Aragón-Noriega, E. A., E. M. Pérez-Arvizu & W. Valenzuela-Quiñonez. 2012. Latitudinal variation in reproduction timing of whiteleg shrimp Litopenaeus vannamei (Decapoda, Penaeidae) of the Mexican Pacific coast. Crustaceana, 85(3): 287-300.

Aranceta-Garza, F., F. Arreguín-Sánchez, G. Ponce-Díaz & J. C. Seijo. 2016. Natural mortality of three commercial penaeid shrimps (Litopenaeus vannamei, L. stylirostris and Farfantepenaeus californiensis) of the Gulf of California using gnomonic time divisions. Sci. Mar., 80(2): 199-206.

Aranceta-Garza, F., F. Arreguín-Sánchez, J. C. Seijo, G. Ponce-Díaz, D. Lluch-Cota & P. del Monte-Luna. 2020. Determination of catchability-at-age for the Mexican Pacific shrimp fishery in the southern Gulf of California. Reg. Stud. Mar. Sci., 33: 100967.

Baranov, F. I. 1918. On the question of the biological basis of fisheries. Izvestiya Nauchno-Issled Institut, 1: 81–128.

Barlas, Y. 1989. Multiple tests for validation of system dynamics type of simulation models. European journal of operational research, 42(1): 59-87.

Beverton, R. H. J. & S. J. Holt. 1957. On the dynamics of exploited populations. Fisheries Investments London, (Series 2) 19: 1–533.

Caddy, J. F. 2018. Conserving spawners and harvesting juveniles Is this a better alternative to postponing capture until sexual maturity? 25-58, In: Seijo J. C. & J. G. Sutinen (Eds.), Advances in Fisheries Bioeconomics: Theory and Policy. Routledge, UK.

Caddy, J. F. & J. C. Seijo. 2002. Reproductive contributions foregone with harvesting: a conceptual framework. Fish. Res., 59(1-2): 17-30.

Castro-Ortiz, J. L. & D. Lluch-Belda. 2008. Impacts of interannual environmental variation on the shrimp fishery off the Gulf of California. CalCOFI Rep., 49: 183-190.

Cervantes-Hernández, P., S. Ramos-Cruz & A. Gracia-Gasca. 2006. Evaluación del estado de la pesquería de camarón en el Golfo de Tehuantepec. Hidrobiológica, 16(3): 233-239.

Cervantes-Hernández, P., B. Sánchez-Meraz, S. J. Serrano-Guzmán, A. Frías-Velasco, S. Ramos-Cruz & A. Gracia. 2008. Variación interanual de la abundancia de Farfantepenaeus californiensis (Holmes 1900) en el Golfo de Tehuantepec. Hidrobiológica, 18(3): 215-226.

Chávez E. A., & M. C. Rodríguez de la Cruz. 1971. Estudios sobre el crecimiento del camarón café (Litopenaeus californiensis Holmes) del Golfo de California. Rev. Soc. Mex. Hist. Nat., 32: 111-127.

Chávez-Herrera, D. 2001. Aspectos sobre la abundancia y la distribución de los camarones Penaeidos de la costa de Sinaloa y el norte de Nayarit, México de 1992 a 2000. Tesis de Maestría, UAS., 52 p.

CONAPESCA, 2018. Anuario estadístico de acuacultura y pesca 2018. CONAPESCA. México., 293 p.

CONAPESCA. 2004. Plan de manejo para la pesquería de camarón en el litoral del Océano Pacífico Mexicano. INP-CONAPESCA. México., 76 p.

CONEVAL. 2018. https://www.coneval.org.mx/Medicion/MP/Paginas/Pobreza-2018.aspx

Duarte, J. A., A. Hernández-Flores, S. Salas & J. C. Seijo. 2018. Is it sustainable fishing for Octopus maya Voss and Solis, 1966, during the breeding season using a bait-based fishing technique?. Fish. Res., 199: 119-126.

FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma., 223 p.

García, J. V. B. & A. Flores-Nava. 2019. The contribution of small-scale fisheries to food security and family income in Chile, Colombia, and Perú. 329-352, In: S. Salas, M. J. Barragán-Paladines & R. Chuenpagdee (Eds.), Viability and Sustainability of Small-Scale Fisheries in Latin America and The Caribbean. MARE Publication Series 19.

García, S. & L. Le Reste.1986. Ciclos vitales, dinámica, explotación y ordenación de las poblaciones de camarones peneidos costeros. FAO Documento Técnico Pesquero. No. 203., 180 p.

García-Juárez, A. R., G. Rodríguez-Domínguez & D. B. Lluch-Cota. 2009. Blue shrimp (Litopenaeus stylirostris) catch quotas as a management tool in the Upper Gulf of California. Cienc. Mar., 35(3): 297-306.

García-Juárez, A.R., D. Chávez-Herrera & C. Enciso-Enciso. 2014. La pesquería de camarón en el Alto Golfo de California. SAGARPA-INAPESCA. Informe Técnico., 49 p.

Gillett, R. 2008. Global study of shrimp fisheries. FAO Fisheries Technical Paper. No. 475. Rome, FAO., 331 p.

INAPESCA. 2000. Catálogo de los Sistemas de Captura de las Principales Pesquerías Comerciales. SEMARNAP-INAPESCA, 174 p.

INAPESCA 2012. Plan de manejo de la pesquería de camarón del Pacífico Mexicano. SAGARPA-CONAPESCA. México., 154 p.

INAPESCA. 2013. Análisis de las capturas de camarón en la temporada 2012-2013 del litoral Pacífico. SAGARPA. CRIP Mazatlán. México, 93 p.

INAPESCA. 2016. Evaluación y Manejo de la Pesquería de camarón del Pacífico mexicano (Captura, Puntos de Referencia, Biomasa, Edad, Medio Ambiente, Fauna de Acompañamiento). INAPESCA. México, 42 p.

Leal-Gaxiola, A., J. López-Martínez, E. A. Chávez, S. Hernández-Vázquez & F. Méndez-Tenorio. (2001). Interannual variability of the reproductive period of the brown shrimp, Farfantepenaeus californiensis (Holmes, 1900)(Decapoda, Natantia). Crustaceana, 839-851.

Madrid-Vera, J., H. Darío Chávez, A. Juan Melchor, M. S. Ricardo & J. A. Rodríguez-Preciado. 2012. Management for the white shrimp (Litopenaeus vannamei) from the southeastern Gulf of California through biomass models analysis. Open J. Mar. Sci., 2: 8-15.

Loría, E. 2007. Econometría con aplicaciones. Mexico: Pearson Educación. 331 p.

Manetsch, T. J. 1976. Time varying distributed delays and their use in aggregate models of large systems. IEEE Trans. Syst. Man Cybern. Syst., SMC-6 (8): 547–53.

Martínez-Aguilar, S., E. Morales-Bojórquez, F. Arreguín-Sánchez & J.A. De Anda-Montañez. 1999. Catchability: programa computarizado para estimar el coeficiente de capturabilidad en función de la longitud. Centro Regional de Investigación Pesquera de La Paz del INP, Centro Interdisciplinario de Ciencias Marinas del IPN, Centro de Investigaciones Biológicas del Noroeste S.C. La Paz, Baja California Sur, México, 16 p.

Medina, A. S. & L. A. Soto. 2003. Assessment of the fishing effort level in the shrimp fisheries of the Central and Southern Gulf of California. NAGA, WorldFish Center Quarterly, 26(4): 16-20.

Meraz-Sánchez, R., J. Madrid-Vera & D. Herrera. 2013. An Approach to Assessment to Population of the Brown Shrimp, Farfantepenaeus californiensis (Holmes, 1900), as a Management Fisheries Tool in the Southeastern Gulf of California. Open J. Mar. Sci., 3: 40-47.

Morales-Bojórquez, E., J. López-Martínez & S. Hernández-Vázquez. 2001. Dynamic catch-effort model for brown shrimp Farfantepenaeus californiensis (Holmes) from the Gulf of California, Mexico. Cienc. Mar., 27(1): 105-124.

Muñoz-Rubí H. A., D. Chávez-Herrera & F. Villegas-Hernández. 2012. Evaluación de las poblaciones de Litopenaeus vannamei, L. stylirostris y Farfantepenaeus californiensis en el sistema lagunar Huizache-Caimanero, Sinaloa, en 2011. Informe técnico. INP-CRIP, Mazatlán, 23 p.

Nance, J., W. Keithly Jr, C. Caillouet Jr, J. Cole, W. Gaidry, B. Gallaway & M. Travis. 2008. Estimation of effort, maximum sustainable yield, and maximum economic yield in the shrimp fishery of the Gulf of Mexico. NOAA Technical Memorandum, NMFS-SEFSC-570., 71 p.

Pascoe, S., V. Kahui, T. Hutton & C. Dichmont. 2016. Experiences with the use of bioeconomic models in the management of Australian and New Zealand fisheries. Fish. Res., 183: 539-548.

Pérez Vivar, T. L. 2003. Dinámica poblacional del camarón blanco Litopenaeus vannamei (Boone, 1931) en la plataforma continental de Sinaloa y Nayarit. Tesis de Maestría. ICMyL-UNAM. Mazatlán, 86 p.

Pindyck, R. S., & Rubinfeld, D. L. 1991. Econometrics Models and Economic Forecast, 2nd ed. USA: McGraw‐Hill Company. 596 p.

Pomeroy, R. S. 2012. Managing overcapacity in small-scale fisheries in Southeast Asia. Mar. Policy., 36(2): 520-527.

Power, M. 1993. The predictive validation of ecological and envi‐ ronmental models. Ecological Modelling, 68: 33–50.

Ramos-Cruz, S. 2013. Evaluación de la pesquería artesanal de camarón en el sistema lagunar La Pampita-Joya-Buenavista, Chiapas, México. Cien. Pesq., 21(2): 5-11.

Ramos-Cruz, S., B. Sánchez-Meraz, F. Carrasco-Ayuso & P. Cervantes-Hernández. 2006. Estimación de la tasa de mortalidad natural de Farfantepenaeus californiensis (Holmes, 1900) y Litopenaeus vannamei (Boone, 1931) en la zona costera del Golfo de Tehuantepec, México. Rev. Biol. Mar. Oceanogr., 41(2): 221-229.

Rivera-Velázquez, G., L. A. Soto, I. H. Salgado-Ugarte & E. J. Naranjo 2009. Assessment of an artisanal shrimp fishery of Litopenaeus vannamei in a lagoon-estuarine system based on the concept of maximum sustainable yield. Rev. Biol. Mar. Oceanogr., 44(3): 635-646.

Roff, D. A. 1983. Analysis of catch/effort data a comparison of three methods. Canadian Journal of Fisheries and Aquatic Sciences, 40: 1496–1506.

Salas, S., M. J., Barragán-Paladines & Chuenpagdee, R. 2019. Viability and sustainability of small-scale fisheries in Latin America and the Caribbean (Vol. 19). Springer. 574 p.

Seijo, J. C., J.F. Caddy & J. Euan. 1994. SPATIAL: Space-time dynamics in marine fisheries, a bioeconomic software package for sedentary species. FAO Comp. Inf. Series. Fish, 116 p.

Seijo, J.C., O. Defeo & S. Salas. 1998. Fisheries bioeconomics: theory, modelling and management. FAO/Daya Publishing House, New Delhi, India, 108 p.

Sparre, P. & S. C. Venema.1998. Introduction to tropical fish stock assessment. Part 1 – Manual. FAO Fisheries Technical Paper No. 306/1, 337 p.

Ward, J., C. Adams, W. Griffin, R. Woodward, M. Haby & J. Kirkley. 2004. Shrimp business options. Proposals to develop a sustainable shrimp fishery in the Gulf of Mexico and South Atlantic. National Marine Fisheries Service, Washington, DC.

Descargas

Publicado

2021-12-31

Cómo citar

Aranceta-Garza, F., Seijo, J. C., & Vergara-Solana, F. (2021). Bioeconomics of technological interdependencies in a sequential shrimp fishery: optimal size of the industrial fleet in southern Gulf of California. CICIMAR Oceánides, 36(1-2), 1–18. https://doi.org/10.37543/oceanides.v36i1-2.254

Número

Sección

Artículos