Efecto de dietas con diatomeas y dinoflagelados en la producción de huevos y tasas de ingestión de Centropages furcatus (Copepoda:Clanoidea) de una bahía subtropical (Bahía de La Paz, Golfo de California).

Autores/as

  • C. J. Band-Schmidt
  • R. Pacheco-Chávez
  • J. A. Del íngel-Rodrí­guez
  • S. Hernández-Trujillo

DOI:

https://doi.org/10.37543/oceanides.v24i2.56

Palabras clave:

Centropages furcatus, producción de huevos, ácidos grasos, Bahía de La Paz, fitoplancton

Resumen

El objetivo del presente trabajo fue estimar bajo condiciones de laboratorio el efecto de dietas de diatomeas y dinoflagelados en las tasas de  sobrevivencia, ingestión y producción de huevos del copépodo Centropages furcatus recolectado en la Bahía de La Paz. Se determinó el perfil de ácidos grasos de las diatomeas Odontella longicruris y Chaetoceros sp. y de los dinoflagelados Scrippsiella sp., Gyrodinium sp. y Prorocentrum micans, suministrados como alimento a C. furcatus. Después de incubar a 24 °C en oscuridad durante 24 h, la sobrevivencia de las hembras en todas las dietas fue > 90%. Las dietas de dinoflagelados favorecieron una mayor producción de huevos (>25 huevos hembra-1 día-1) con respecto a las diatomeas (<10 huevos hembra-1 día-1). No se observaron diferencias significativas en las tasas de ingesta al alimentarse con dinoflagelados o diatomeas, que variaron entre 400 y 900 ng C copépodos-1 h-1. Se obtuvo una mayor producción de huevos al utilizar dinoflagelados como alimento, sugiriendo una mayor calidad nutricional que se pudiera atribuir en parte a la mayor proporción de los ácidos grasos 18:4 (n-3) y 22:6 (n-3). Es posible que una mayor abundancia de dinoflagelados en la Bahía de La Paz pudieran relacionarse con una mayor producción de huevos de C. furcatus.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, D.M., D.M. Kulis & B.J. Binder. 1984. Sexuality and cyst formation in the dinoflagellate Gonyaulax tamarensis: cyst yield in batch cultures. J. Phycol., 20: 418-425. https://doi.org/10.1111/j.0022-3646.1984.00418.x

Anderson, T.R. & D.W. Pond. 2000. Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon and nitrogen in the nutrition of marine copepods. Limnol. Oceanogr., 45: 1162-1167. https://doi.org/10.4319/lo.2000.45.5.1162

Auel, H., M. Harjes, R. de Rocha, D. Stubing & W. Hagen. 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the artic hyperiid amphipods Themisto abyssorum and T. libellula. Polar Biology, 25: 374-383. https://doi.org/10.1007/s00300-001-0354-7

Barnung, T.N. & O. Grahl-Nielsen. 1987. The fatty acids profile in Cod (Gadus morhua L.) eggs and larvae. Developmental variations and responses to oil pollution. Sarsia, 72: 412-417. https://doi.org/10.1080/00364827.1987.10419750

Ban, S., C. Burns, J. Castel, Y. Chaudron, E. Christou, R. Escribano, S. Fonda, Umani, S. Gasparini, F. Guerrero-Ruiz, M. Hoffmeyer, A. Iaonora, H.K. Kang, M. Laabir, A. Lacste, A. Miralto, X. Ning, S. Poulet, V. Rodríguez, J. Runge, J. Shi, M. Starr, S. Uye & Y. Wang. 1997. The paradox of diatom-copepod interactions. Mar. Ecol. Prog. Ser., 157: 287-293. https://doi.org/10.3354/meps157287

Band-Schmidt, C.J., R. Pacheco-Chávez & S. Hernández-Trujillo. 2008. Influence of phytoplankton diets on the grazing rate and egg production of Acartia clausi and A. lilljeborgii (Copepoda: Calanoida) from Bahía de La Paz, Gulf of California. Hidrobiologica, 18 (supplement 1):133-140.

Bell, M.V., R. Batty, J.C. Navarro, J.R. Sargent & J.R. Dick. 1995. Dietary deficiency of docosahexanoic acid impairs vision at low light intensities in juvenile herring (Cuplea harengus L.). Lipids, 30: 443-449. https://doi.org/10.1007/BF02536303

Cabell, D.S. & P. Alatalo. 1992. Effects of constant and intermittent food supply on life-history parameters in a marine copepod. Limnol. Ocean., 37: 1618-1639. https://doi.org/10.4319/lo.1992.37.8.1618

Calbet, A. & M. Alcaraz. 1996. Effects of constant and fluctuating food supply on egg production rates of Acartia grani (Copepoda: Calanoida). Mar. Ecol. Progr. Ser., 140: 33-39. https://doi.org/10.3354/meps140033

Ceballos, S. & A. Ianora. 2003. Different diatoms induce contrasting effects on the reproductive success of the copepod Temora stylifera. J. Exp. Mar. Biol. and Ecol., 294: 189-202. https://doi.org/10.1016/S0022-0981(03)00263-6

Checkley, D.M., M.J. Jr. Dagg & S. Uye. 1992. Feeding, excretion and egg production by individuals and population of the marine, planktonic copepods, Acartia spp. and Centropages furcatus. J. Plankton Res., 14: 71-97. https://doi.org/10.1093/plankt/14.1.71

Cotonnec, G., C. Brunet, B. Sautour & G. Thoumelin. 2001. Nutritive value and selection of food particles by copepods during a spring bloom of Phaeocystsis sp. in the English Channel, as determined by pigment and fatty acid analyses. J. Plankton Res., 23: 693-703. https://doi.org/10.1093/plankt/23.7.693

Dagg, M. 1977. Some effects of patchy food environments on copepods. Limnol. Oceanogr., 22: 99-107. https://doi.org/10.4319/lo.1977.22.1.0099

Del Ángel-Rodríguez, J.A., L. Carreón-Palau, C. J. Band-Schmidt & R. Pacheco-Chávez. 2008. Lipid source identification in key species of Bahía de La Paz, Gulf of California, Mexico. Am. Soc. Limnol. Oceanogr. Abstracts. Summer Meeting 8 -13 June. St. John's, Newfoundland and Labrador. Canada.

Falk-Petersen, S., W. Hagen, G. Kattner, A. Clarke & J. R. Sargent. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can. J. Fish. Aquat. Sci., 57 (Suppl. 3): 178-191. https://doi.org/10.1139/f00-194

Fernández-Álamo, M. A. & J. Färber-Lorda. 2006. Zooplankton and the oceanography of the eastern tropical Pacific: A review. Progr. Oceanogr., 69: 318-359. https://doi.org/10.1016/j.pocean.2006.03.003

Frangópulos M., C. Guisande, I. Maneiro, I. Riveiro & J. Franco. 2000. Short-term and long-term effects of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi. Mar. Ecol. Progr. Ser., 203: 161-169. https://doi.org/10.3354/meps203161

Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanog., 17: 805-815. https://doi.org/10.4319/lo.1972.17.6.0805

Gómez-Gutiérrez, J., J.R. Palomares-García, R. De Silva-Dávila, M.A. Carballido-Carranza & Martínez-López, A. 1999. Copepod daily egg production and growth rates in Bahía Magdalena, Mexico. J. Plankton Res., 21: 2227-2244. https://doi.org/10.1093/plankt/21.12.2227

Graeve, M., G. Kattner & D. Pepenburg. 1997. Lipids in arctic benthos, does the fatty acids and alcohol composition reflect feeding and trophic interactions? Polar Biology, 18: 53-61. https://doi.org/10.1007/s003000050158

Guillard, R. R. L. 1973. Division rates. In: Stein, J. R. (ed.). Handbook of phycological methods. Cambridge University, London.

Hirst, A.G. & A.J. Bunker. 2003. Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature and body weight. Limnol. Oceanogr., 48: 1988-2010. https://doi.org/10.4319/lo.2003.48.5.1988

Hyung-Ku, K. & S.A. Poulet. 2000. Reproductive success in Calanus helgolandicus as a function of diet and egg cannibalism. Mar. Ecol. Prog. Ser., 201: 241-250. https://doi.org/10.3354/meps201241

Ianora, A., A. Miralto, S.A. Poulet, Y. Carotenuto, I. Buttino, G. Romano, R. Casotti, G. Pohnert, T. Wichard, L. Coluc- ciD'Amato, G. Terrazzano & V. Smetacek. 2004. Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 29: 403-407. https://doi.org/10.1038/nature02526

Jónasdóttir, S.H. 1994. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar. Biol., 121: 67-81. https://doi.org/10.1007/BF00349475

Kleppel, G.S. 1993. On the diets of calanoid copepods. Review. Mar. Ecol. Progr. Ser., 99: 183-195. https://doi.org/10.3354/meps099183

Kleppel, G.S., D.V. Holliday & R.E. Pieper. 1991. Trophic interactions between copepods and microplankton: a question about the role of diatoms. Limnol. Ocea- nogr., 36: 172-178. https://doi.org/10.4319/lo.1991.36.1.0172

Kyoungsoon, S., J. Min-Chul, J. Pung-Kuk, J. Se-Jong, L. Tea-Kyun & Ch. Man. 2003. Influence of food quality on egg production and viability of the marine planktonic copepod Acartia omorii. Prog. Oceanog., 57: 265-277. https://doi.org/10.1016/S0079-6611(03)00101-0

Laabir, M., S.A. Poulet, A. Ianora, A. Miralto & A. Cueff. 1995. Reproductive response of Calanus helgolandicus. II. In situ inhibition of embryonic development. Mar. Ecol. Progr. Ser., 129: 97-105. https://doi.org/10.3354/meps129097

Lavaniegos, B.E. & E. González-Navarro. 1999. Copépodos del Canal de San Lorenzo en el ENSO 1992-93. Ciencias Marinas, 25(2): 240-257. https://doi.org/10.7773/cm.v25i2.663

Lepage, G. & C.C. Roy. 1984. Improved recovery of fatty acids through direct transesterification without prior extraction or purification. J. Lipid. Res., 25: 1391-1396. https://doi.org/10.1016/S0022-2275(20)34457-6

Lepage, G. & C.C. Roy. 1986. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid. Res., 27: 115-120. https://doi.org/10.1016/S0022-2275(20)38861-1

Mauchline, J. 1998. Advances in Marine Biology. The Biology of Calanoid Copepods. Academic Press, London: 710 p.

Morey-Gaines, G. 1982. Gymnodinium catenatum Graham (Dinophyceae): morphology and affinities with armoured forms. Phycologia, 21: 154-163. https://doi.org/10.2216/i0031-8884-21-2-154.1

Müller-Navarra, D.C., M.T. Brett, A.M. Liston & C.R. Goldman. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403: 74-77. https://doi.org/10.1038/47469

Murray, M.M. & N.H. Marcus. 2002. Survival and diapause egg production of the copepod Centropages hamatus raised on dinoflagellate diets. J. Exp. Mar. Biol. Ecol., 270: 39-56. https://doi.org/10.1016/S0022-0981(02)00016-3

Navarro, J.C., R.J. Henderson, L.A. McEvoy, M.V. Bell & F. Amat. 1999. Lipid conversion during enrichment of Artemia. Aquaculture, 174: 155-166. https://doi.org/10.1016/S0044-8486(99)00004-6

Palomares-García, J.R. 1996. Estructura especial y variación estacional de los copépodos en la Ensenada de La Paz. Oceánides, 11: 29-43.

Palomares-García, J.R., A. Martínez-López & R. de Silva-Dávila. 2003. Winter egg production rates of four calanoid copepod species in Bahía de La Paz, Mexico. Contributions to the study of East Pacific Crustaceans, 2: 139-152.

Pohnert, G., O. Lumineau, A. Cueff, S. Adolph, C. Cordevant, M. Lange & S. Poulet. 2002. Are volatile unsaturated aldehydes from diatoms the main line of chemical defense against copepods? Mar. Ecol. Progr. Ser., 245: 33-45. https://doi.org/10.3354/meps245033

Postel, L. H. Fock & W. Hagen. 2000. Biomass and abundance. 83-192, In: Harris, R.P., P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (Eds.). ICES Zooplankton Methodology Manual. Academic Press, Londres. https://doi.org/10.1016/B978-012327645-2/50005-0

Poulet, S.A., A. Ianora, A. Miralto & A. Meijer. 1994. Do diatoms arrest embryonic development in copepods? Mar. Ecol. Progr. Ser., 111: 79-86. https://doi.org/10.3354/meps111079

Rivero-Rodríguez, S., A.R. Beaumont & M.C. Lora-Vilchis. 2007. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquac., 263: 199-210. https://doi.org/10.1016/j.aquaculture.2006.09.038

Roman, M.R. 1984. Utilization of detritus by the copepod, Acartia tonsa. Limnol. Oceanogr., 29: 949-959. https://doi.org/10.4319/lo.1984.29.5.0949

Runge, J.A. & J.C. Roff. 2000. The measurement of growth and reproductive rates. 401-444. In: R.P. Harris, P.H. Wiebe, J. Lenz, H.R. Skjoldal & M. Huntley (Eds.). ICES zooplankton methodology manual. Academic Press. https://doi.org/10.1016/B978-012327645-2/50010-4

Saiz, E., P. Tiselius, P.R. Jonhsson, P. Verity & G. Paffenhöffer. 1993. Experimental records of the effects of food patchiness and predation on egg predation of Acartia tonsa. Limnol. Oceanogr., 38: 280-289. https://doi.org/10.4319/lo.1993.38.2.0280

Sournia, A. 1969. Cycle annuel du phytoplankton et de la production primaire dans les mers tropicales. Mar. Biol., 3: 287-303. https://doi.org/10.1007/BF00698859

Stanley-Samuelson, D.W. 1987. Physiological roles of prostaglandins and other eicosanoids in invertebrates. Biology Bulletin, 173: 92-109. https://doi.org/10.2307/1541865

Stanley-Samuelson, D.W. 1994. The biological significance of prostaglandines and related eicosanoides in invertebrates. American Zoologist, 34: 589-598. https://doi.org/10.1093/icb/34.6.589

Strathmann, R.R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr., 12: 411-418. https://doi.org/10.4319/lo.1967.12.3.0411

Throndsen, J. 1978. Preservation and storage (Chapter 4). 69-74, In: Sournia, A. (Ed.). Phytoplankton Manual. UNESCO, Paris.

Descargas

Publicado

2009-12-04

Cómo citar

Band-Schmidt, C. J., Pacheco-Chávez, R., Del íngel-Rodrí­guez, J. A., & Hernández-Trujillo, S. (2009). Efecto de dietas con diatomeas y dinoflagelados en la producción de huevos y tasas de ingestión de Centropages furcatus (Copepoda:Clanoidea) de una bahía subtropical (Bahía de La Paz, Golfo de California). CICIMAR Oceánides, 24(2), 71–83. https://doi.org/10.37543/oceanides.v24i2.56

Número

Sección

Artículos