Respuesta de una poliamina endógena en el alga epifita Bonnemaisonia hamifera (Bonnemaisoniales: Rhodophyta) debido a interacciones con su hospedero.

Autores/as

  • M. A. Vergara -Rodarte
  • J. I. Murillo ílvarez
  • R. Robaina Romero

DOI:

https://doi.org/10.37543/oceanides.v30i1.169

Palabras clave:

Poliamina, macroalga, extractos, relacion biótica, epifita

Resumen

Se evaluó el contenido endógeno de poliaminas, tanto de la fracción libre como de la conjugada-
ácido soluble en la macroalga epifita Bonnemaisonia hamifera en presencia de su hospedero Gelidium arbuscula y de extractos obtenidos de G. arbuscula y G. robustum. En presencia de talos vivos de G. arbuscula, el contenido de putrescina libre disminuyó (P ‹ 0.05) y la espermina y espermidina tuvieron un ligero incremento sin diferencia significativa. En los tratamientos con los distintos extractos y dosis, el contenido de putrescina libre también disminuyó. La fracción de poliaminas conjugadas mostró una tendencia diferente, particularmente con la dosis más alta del extracto etanólico de G. robustum donde putrescina y espermidina conjugadas-solubles se incrementaron significativamente. Los resultados obtenidos sugieren que las poliaminas juegan un papel en el establecimiento de las relaciones epifito-hospedero, y que la putrescina es la que presenta la mayor respuesta en B. hamifera en la interacción con su hospedero y en presencia de los extractos. Se discute la variación de las poliaminas y las posibles causas .

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aazizi, M.A., G.M. Assef & R Faure. 1989. Gelidene, a new polyhalogenated monocyclic monoterpen from the red marine algae Gelidium sesquipedale. J. Nat. Prod., 52: 829-831. https://doi.org/10.1021/np50064a026

Alcazar, R., F. Marco, J.C. Cuevas, M. Patron, A. Fernando, P. Carrasco, A.F. Tiburcio & T. Altabella. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28:1867-1876. https://doi.org/10.1007/s10529-006-9179-3

Alcázar, R., T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Konez, P. Carrasco & A Tiburcio. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 231: 1237-1249. https://doi.org/10.1007/s00425-010-1130-0

Altman, A. 1989. Polyamines and plant hormones. 121-145, In: Bachrach U, Heimer YM (eds), The physiology of polyamines, CRC Press, Boca Raton.

Bachrach, U. 2010. The early history of polyamine research. Plant Physiol. Biochem., 48: 490-495. https://doi.org/10.1016/j.plaphy.2010.02.003

Bais, H.P., G. Sudha & G.A. Ravishankar. 1999. Putrescine influences growth and production of coumarines in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local). J. Plant Growth Regul., 18: 159-165. https://doi.org/10.1007/PL00007064

Bais, H.P., S. Govindaswamy & G.A. Ravishankar. 2000. Enhancement of growth and coumarine production in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local) under the influence of fungal elicitors. J. Biosci. Bioeng., 90: 648-653. https://doi.org/10.1016/S1389-1723(00)90011-2

Bakus, G.J. 1971. An ecological hypothesis for the evolution of toxicity in marine organisms. 57- 62, in: de Vries & A. Kochva (Eds). Toxins of animal and plant origin. Gordon and Breach. New York.

Bassard, J.E., P. Ullmann, F. Bernier & D. WerkReichhart. 2010. Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71: 1808-1824. https://doi.org/10.1016/j.phytochem.2010.08.003

Basu, R., & B. Ghosh. 1991. Polyamines in various rice genotypes with respect to NaCl salinity. Physiol. Plant. 82: 575-581. https://doi.org/10.1034/j.1399-3054.1991.820414.x

Belles, J.M., M.A. Pérez-Amador, J. Carbonell & V. Conejero. 1993. Correlation between ornithine decarboxylase and putrescine in tomato plants infected by citrus exocortis viroid or treated with ethephon. Plant Physiol., 102: 933-937. https://doi.org/10.1104/pp.102.3.933

Bhattacharya, E. & M.V. Rajam. 2007. Polyamine biosynthetic pathway: a potential target to enhancing alkaloid production. 129-143, in: Verpoorte R., A.W. Alfermann & T.S. Johnson (eds). Application of plant metabolic engineering. Springer. https://doi.org/10.1007/978-1-4020-6031-1_5

Cheng, Y., W. Ma, X. Li, et al. 2012. Polyamines stimulate hyphal branching and infection in the early stage of Glomus etunicatum colonization. World J. Microbiol Biotechnol., 28: 1615-1621. https://doi.org/10.1007/s11274-011-0967-0

Cohen, E., A. Shoshana, T.H. Heimer & Y. Mizrahi. 1984. Polyamine biosynthetic enzymes in the cell cycle of Chlorella. Plant Physiol., 74: 385- 388. https://doi.org/10.1104/pp.74.2.385

Cronin, G. & M.E. Hay. 1996a. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos. 77: 93-106. https://doi.org/10.2307/3545589

Cronin, G. & M.E. Hay. 1996b. Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology. 77: 1531-1543. https://doi.org/10.2307/2265549

Cvikrova, M., L. Gemperlova, J. Eder & E. Zazímalova. 2008. Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents. Plant Cell Reports, 27: 1147-1156. https://doi.org/10.1007/s00299-008-0538-5

Edreva, A.M., V.B. Velikova & T.D. Tsonev. 2007. Phenylamides in plants. Russian J. Plant Physiol., 54: 287-301. https://doi.org/10.1134/S1021443707030016

El-Shintinawy, F. 2000. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38: 615-620. https://doi.org/10.1023/A:1012421826212

Galston, A.W. & R.K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol., 94: 406- 410. https://doi.org/10.1104/pp.94.2.406

García-Jiménez, P., M. Rodrigo & R. Robaina. 1998. Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Grateloupia cultured in vitro. J. Appl. Phycol. 10: 95-100. https://doi.org/10.1023/A:1008063532233

García-Jiménez, P., M.P. Just, M.A. Delgado & R. Robaina. 2007. Transglutaminase activity decrease during acclimation to hyposaline conditions in marine seaweed Grateloupia doryphora (Rhodphyta, Halymeniaceae). J. Plant Physiol., 364: 367-370. https://doi.org/10.1016/j.jplph.2006.05.018

Ghosh, B. 2000. Polyamines and plant alkaloids. Indian J. Expt. Bot., 38: 1086-1091.

Graser, G., & T. Hartmann. 2000. Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris. Planta, 211: 239-245. https://doi.org/10.1007/s004250000260

Groppa, M.D. & M.P. Benavides. 2008. Polyamines and abiotic stress: recent advances. Amino Acids. 34: 35-45. https://doi.org/10.1007/s00726-007-0501-8

Guzmán-Urióstegui, A., P. García-Jiménez, F.D. Marián, D. Robledo & R.R. Robaina. 2002. Polyamines influence maturation in reproductive structures of Gracilaria cornea (Gracilariales, Rhodophyta). J. Phycol. 38: 1169-1175. https://doi.org/10.1046/j.1529-8817.2002.01202.x

Kumar, A., M.A. Taylor, S.A. Madarif & H.V. Davies. 1996. Potato plants expressing antisense and sense Sadenosylmethionine decarboxylase (SAMDC) transgene shows altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J., 9: 147-158. https://doi.org/10.1046/j.1365-313X.1996.09020147.x

Kumar, S.V., M.L. Sharma & M.V. Rajam. 2006. Polyamine biosynthetic pathway as a novel target for potential applications in plant biotechnology. Physiol. Mol. Biol. Plants, 12: 53-58.

Kusano, T., T. Berberich, C. Tateda & Y. Takahashi. 2008. Polyamines: essential factors for growth and survival. Planta. 228: 367-381. https://doi.org/10.1007/s00425-008-0772-7

Lee, T.M. & M.H. Chen. 1998. Hyposaline effect on polyamine accumulation in Ulva fasciata (Uvales, Chlorpphyta). Bot. Bull. Acad. Sci., 39: 167-174.

Lefèvre, I.,E. Gratia & S. Lutts. 2001. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci., 161: 943-952. https://doi.org/10.1016/S0168-9452(01)00485-X

Liu, J.H., H. Kitashiba, J. Wang, Y. Ban & T. Moriguchi. 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 24: 117-128. https://doi.org/10.5511/plantbiotechnology.24.117

Marián, F.D., P. García-Jiménez & R.R. Robaina. 2000. Polyamines in marine macroalgae: levels of putrescine, spermidine and spermine in the thalli and changes in their concentration during glycerol-induced cell growth in vitro. Physiol Plant., 110: 530-534. https://doi.org/10.1111/j.1399-3054.2000.1100416.x

Martin-Tanguy, J. 1985. The occurrence and possible function of hydroxycinnamoyl acid amines in plants. Plant Growth Regul., 3: 381-399. https://doi.org/10.1007/BF00117595

Morant, M., G.A. Schoch, P. Ullmann. 2007. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol. Biol., 63: 1-19. https://doi.org/10.1007/s11103-006-9028-8

Niemi, K., R. Julkunen-Tiitto, H. Häggman & T. Sarjala. 2007. Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J. Exp. Bot., 58: 391-401. https://doi.org/10.1093/jxb/erl209

Nogales, A., J. Aguirreolea, E. Santa María, A. Camprubí & C. Calvet. 2009. Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant and Soil., 317: 177-187. https://doi.org/10.1007/s11104-008-9799-6

Nylund, G.M., G. Cervin, F. Persson, M. Hermansson, P.D. Steinberg & H. Pavia. 2008. Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonization. Mar. Ecol. Prog. Ser., 369: 39-50.

https://doi.org/10.3354/meps07577

Paasche, E., S. Bruback, S. kattebol, J.R. Young & J.C. Green. 1996. Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities. Phycologia, 35: 394-403. https://doi.org/10.2216/i0031-8884-35-5-394.1

Pansch, C., O. Cerda, M. Lenz, M. Wahl & M. Thiel. 2009. Consequences of light reduction for antiherbivore defense and bioactivity against mussels in four seaweed species from northern-central Chile. Mar Ecol. Prog. Ser. 381: 83-97. https://doi.org/10.3354/meps07943

Paul, V.J. & K. Van Alstyne. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar Biol. Ecol. 160:191- 203. https://doi.org/10.1016/0022-0981(92)90237-5

Pavia, H., G. Cervin, A. Lindgren & P. Áberg. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157: 139-146. https://doi.org/10.3354/meps157139

Pavia, H. & E. Brock. 2000. Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol. Prog. Ser. 193:285-294. https://doi.org/10.3354/meps193285

Puglisi, C.A. & V.J. Paul. 1996. Intraspecific chemical variation in the red alga Portieria hornemannii: monoterpene concentrations are not influenced by nitrogen or phosphorus enrichment. Mar Biol. 128: 161-170. https://doi.org/10.1007/s002270050079

Sacramento, A.T., P. García-Jiménez, R. Alcázar, A. Tiburcio & R.R. Robaina. 2004. Influence of polyamines on the sporulation of Grateloupia (Halymeniaceae, Rhodophyta). J. Phycol., 50:887-894. https://doi.org/10.1111/j.1529-8817.2004.03183.x

Sagor, G.H., T. Liu, H. Takahashi, M. Niitsu, T. Berberich & T. Kusano. 2013. Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. Plant Cell Reports, 32: 1477-1488. https://doi.org/10.1007/s00299-013-1459-5

Shulaev, V. & D.J. Oliver. 2006. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol. 141: 367-372. https://doi.org/10.1104/pp.106.077925

Swanson, A.K. & L.D. Druehl. 2002. Induction, exudation and the UV protective role of kelp phlorotannins. Aquatic Botany. 73: 241-253. https://doi.org/10.1016/S0304-3770(02)00035-9

Tang, W., R.J. Newton, C. Li & T.M. Charles. 2007. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep., 26:115-124. https://doi.org/10.1007/s00299-006-0228-0

Tebayashi, S., Y. Horibata, E. Mikagi, T. Kashiwagi, D.B. Mekuria, A. Dekebo, A. Ishihara & C.S. Kim. 2007. Induction of resistance against the leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Biosci. Biotechnol. Biochem., 71: 1521-1526. https://doi.org/10.1271/bbb.70033

Tiburcio, A.F., J.L. Campos, X. Figueras & R.T. Besford. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Reg., 12: 331-340. https://doi.org/10.1007/BF00027215

Von Ropenack, E., A. Parr & P. Schulze-Lefert. 1998. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J. Biol. Chem., 273: 9013-9022. https://doi.org/10.1074/jbc.273.15.9013

Yoda, H., K. Fujimura, H. Takahashi, I. Munemura, H. Uchimiya & H. Sano. 2009. Polyamines as a common source of hydrogen peroxide in hostand nonhost hypersensitive response during pathogen infection. Plant Mol. Biol., 70: 103- 112. https://doi.org/10.1007/s11103-009-9459-0

Yoda, H., Y. Yamaguchi & H. Sano. 2003. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Physiol., 132: 1973-1982. https://doi.org/10.1104/pp.103.024737

Zacchini, M. & M. Agazio. 2004. Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol. Biochem., 42: 445-450. https://doi.org/10.1016/j.plaphy.2004.03.007

Zapata, P.J., M. Serrano, M.T. Pretel, A. Amorós & M.A. Botella. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci., 167: 781-788. https://doi.org/10.1016/j.plantsci.2004.05.014

Descargas

Publicado

2015-06-27

Cómo citar

Vergara -Rodarte, M. A., Murillo ílvarez, J. I., & Robaina Romero, R. (2015). Respuesta de una poliamina endógena en el alga epifita Bonnemaisonia hamifera (Bonnemaisoniales: Rhodophyta) debido a interacciones con su hospedero. CICIMAR Oceánides, 30(1), 1–8. https://doi.org/10.37543/oceanides.v30i1.169

Número

Sección

Artículos