Endogenous polyamine response in epiphytic Bonnemaisonia hamifera (Bonnemaisoniales: Rhodophyta) due to interaction with its host.

Authors

  • M. A. Vergara -Rodarte
  • J. I. Murillo ílvarez
  • R. Robaina Romero

DOI:

https://doi.org/10.37543/oceanides.v30i1.169

Keywords:

Polyamine, seaweed, extracts, biotic relationships, epiphyte

Abstract

The endogenous polyamine (Pas) content of free and bound-acid soluble fractions was assessed in
the epiphyte Bonnemaisonia hamifera under the presence of its host Gelidium arbuscula and of extracts obtained from G. arbuscula and from G. robustum. In the presence of fresh thalli of G. arbuscula the free putrescine (PUT) content decreased (P ‹ 0.05), while spermine and spermidine (SPD) showed a slightly increased concentration. The content of free PUT also decreased in all treatments with the different extracts and the dose. Bound-soluble PAs showed a different trend, particularly with the highest dose of ethanolic extract of G. robustum, PUT and SPD bound-soluble PA content increased significantly. Based on our results we infer that PAs are involved in the epiphytic relationship between macroalgae, and that PUT produces the greatest response of B. hamifera in the interaction with host and its extracts. The potential causes of its variation and its use for the production of secondary metabolites are discussed.

Downloads

Download data is not yet available.

References

Aazizi, M.A., G.M. Assef & R Faure. 1989. Gelidene, a new polyhalogenated monocyclic monoterpen from the red marine algae Gelidium sesquipedale. J. Nat. Prod., 52: 829-831. https://doi.org/10.1021/np50064a026

Alcazar, R., F. Marco, J.C. Cuevas, M. Patron, A. Fernando, P. Carrasco, A.F. Tiburcio & T. Altabella. 2006. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28:1867-1876. https://doi.org/10.1007/s10529-006-9179-3

Alcázar, R., T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Konez, P. Carrasco & A Tiburcio. 2010. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta. 231: 1237-1249. https://doi.org/10.1007/s00425-010-1130-0

Altman, A. 1989. Polyamines and plant hormones. 121-145, In: Bachrach U, Heimer YM (eds), The physiology of polyamines, CRC Press, Boca Raton.

Bachrach, U. 2010. The early history of polyamine research. Plant Physiol. Biochem., 48: 490-495. https://doi.org/10.1016/j.plaphy.2010.02.003

Bais, H.P., G. Sudha & G.A. Ravishankar. 1999. Putrescine influences growth and production of coumarines in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local). J. Plant Growth Regul., 18: 159-165. https://doi.org/10.1007/PL00007064

Bais, H.P., S. Govindaswamy & G.A. Ravishankar. 2000. Enhancement of growth and coumarine production in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local) under the influence of fungal elicitors. J. Biosci. Bioeng., 90: 648-653. https://doi.org/10.1016/S1389-1723(00)90011-2

Bakus, G.J. 1971. An ecological hypothesis for the evolution of toxicity in marine organisms. 57- 62, in: de Vries & A. Kochva (Eds). Toxins of animal and plant origin. Gordon and Breach. New York.

Bassard, J.E., P. Ullmann, F. Bernier & D. WerkReichhart. 2010. Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71: 1808-1824. https://doi.org/10.1016/j.phytochem.2010.08.003

Basu, R., & B. Ghosh. 1991. Polyamines in various rice genotypes with respect to NaCl salinity. Physiol. Plant. 82: 575-581. https://doi.org/10.1034/j.1399-3054.1991.820414.x

Belles, J.M., M.A. Pérez-Amador, J. Carbonell & V. Conejero. 1993. Correlation between ornithine decarboxylase and putrescine in tomato plants infected by citrus exocortis viroid or treated with ethephon. Plant Physiol., 102: 933-937. https://doi.org/10.1104/pp.102.3.933

Bhattacharya, E. & M.V. Rajam. 2007. Polyamine biosynthetic pathway: a potential target to enhancing alkaloid production. 129-143, in: Verpoorte R., A.W. Alfermann & T.S. Johnson (eds). Application of plant metabolic engineering. Springer. https://doi.org/10.1007/978-1-4020-6031-1_5

Cheng, Y., W. Ma, X. Li, et al. 2012. Polyamines stimulate hyphal branching and infection in the early stage of Glomus etunicatum colonization. World J. Microbiol Biotechnol., 28: 1615-1621. https://doi.org/10.1007/s11274-011-0967-0

Cohen, E., A. Shoshana, T.H. Heimer & Y. Mizrahi. 1984. Polyamine biosynthetic enzymes in the cell cycle of Chlorella. Plant Physiol., 74: 385- 388. https://doi.org/10.1104/pp.74.2.385

Cronin, G. & M.E. Hay. 1996a. Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos. 77: 93-106. https://doi.org/10.2307/3545589

Cronin, G. & M.E. Hay. 1996b. Susceptibility to herbivores depends on recent history of both the plant and animal. Ecology. 77: 1531-1543. https://doi.org/10.2307/2265549

Cvikrova, M., L. Gemperlova, J. Eder & E. Zazímalova. 2008. Excretion of polyamines in alfalfa and tobacco suspension-cultured cells and its possible role in maintenance of intracellular polyamine contents. Plant Cell Reports, 27: 1147-1156. https://doi.org/10.1007/s00299-008-0538-5

Edreva, A.M., V.B. Velikova & T.D. Tsonev. 2007. Phenylamides in plants. Russian J. Plant Physiol., 54: 287-301. https://doi.org/10.1134/S1021443707030016

El-Shintinawy, F. 2000. Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38: 615-620. https://doi.org/10.1023/A:1012421826212

Galston, A.W. & R.K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol., 94: 406- 410. https://doi.org/10.1104/pp.94.2.406

García-Jiménez, P., M. Rodrigo & R. Robaina. 1998. Influence of plant growth regulators, polyamines and glycerol interaction on growth and morphogenesis of carposporelings of Grateloupia cultured in vitro. J. Appl. Phycol. 10: 95-100. https://doi.org/10.1023/A:1008063532233

García-Jiménez, P., M.P. Just, M.A. Delgado & R. Robaina. 2007. Transglutaminase activity decrease during acclimation to hyposaline conditions in marine seaweed Grateloupia doryphora (Rhodphyta, Halymeniaceae). J. Plant Physiol., 364: 367-370. https://doi.org/10.1016/j.jplph.2006.05.018

Ghosh, B. 2000. Polyamines and plant alkaloids. Indian J. Expt. Bot., 38: 1086-1091.

Graser, G., & T. Hartmann. 2000. Biosynthesis of spermidine, a direct precursor of pyrrolizidine alkaloids in root cultures of Senecio vulgaris. Planta, 211: 239-245. https://doi.org/10.1007/s004250000260

Groppa, M.D. & M.P. Benavides. 2008. Polyamines and abiotic stress: recent advances. Amino Acids. 34: 35-45. https://doi.org/10.1007/s00726-007-0501-8

Guzmán-Urióstegui, A., P. García-Jiménez, F.D. Marián, D. Robledo & R.R. Robaina. 2002. Polyamines influence maturation in reproductive structures of Gracilaria cornea (Gracilariales, Rhodophyta). J. Phycol. 38: 1169-1175. https://doi.org/10.1046/j.1529-8817.2002.01202.x

Kumar, A., M.A. Taylor, S.A. Madarif & H.V. Davies. 1996. Potato plants expressing antisense and sense Sadenosylmethionine decarboxylase (SAMDC) transgene shows altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J., 9: 147-158. https://doi.org/10.1046/j.1365-313X.1996.09020147.x

Kumar, S.V., M.L. Sharma & M.V. Rajam. 2006. Polyamine biosynthetic pathway as a novel target for potential applications in plant biotechnology. Physiol. Mol. Biol. Plants, 12: 53-58.

Kusano, T., T. Berberich, C. Tateda & Y. Takahashi. 2008. Polyamines: essential factors for growth and survival. Planta. 228: 367-381. https://doi.org/10.1007/s00425-008-0772-7

Lee, T.M. & M.H. Chen. 1998. Hyposaline effect on polyamine accumulation in Ulva fasciata (Uvales, Chlorpphyta). Bot. Bull. Acad. Sci., 39: 167-174.

Lefèvre, I.,E. Gratia & S. Lutts. 2001. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci., 161: 943-952. https://doi.org/10.1016/S0168-9452(01)00485-X

Liu, J.H., H. Kitashiba, J. Wang, Y. Ban & T. Moriguchi. 2007. Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol. 24: 117-128. https://doi.org/10.5511/plantbiotechnology.24.117

Marián, F.D., P. García-Jiménez & R.R. Robaina. 2000. Polyamines in marine macroalgae: levels of putrescine, spermidine and spermine in the thalli and changes in their concentration during glycerol-induced cell growth in vitro. Physiol Plant., 110: 530-534. https://doi.org/10.1111/j.1399-3054.2000.1100416.x

Martin-Tanguy, J. 1985. The occurrence and possible function of hydroxycinnamoyl acid amines in plants. Plant Growth Regul., 3: 381-399. https://doi.org/10.1007/BF00117595

Morant, M., G.A. Schoch, P. Ullmann. 2007. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol. Biol., 63: 1-19. https://doi.org/10.1007/s11103-006-9028-8

Niemi, K., R. Julkunen-Tiitto, H. Häggman & T. Sarjala. 2007. Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J. Exp. Bot., 58: 391-401. https://doi.org/10.1093/jxb/erl209

Nogales, A., J. Aguirreolea, E. Santa María, A. Camprubí & C. Calvet. 2009. Response of mycorrhizal grapevine to Armillaria mellea inoculation: disease development and polyamines. Plant and Soil., 317: 177-187. https://doi.org/10.1007/s11104-008-9799-6

Nylund, G.M., G. Cervin, F. Persson, M. Hermansson, P.D. Steinberg & H. Pavia. 2008. Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonization. Mar. Ecol. Prog. Ser., 369: 39-50.

https://doi.org/10.3354/meps07577

Paasche, E., S. Bruback, S. kattebol, J.R. Young & J.C. Green. 1996. Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities. Phycologia, 35: 394-403. https://doi.org/10.2216/i0031-8884-35-5-394.1

Pansch, C., O. Cerda, M. Lenz, M. Wahl & M. Thiel. 2009. Consequences of light reduction for antiherbivore defense and bioactivity against mussels in four seaweed species from northern-central Chile. Mar Ecol. Prog. Ser. 381: 83-97. https://doi.org/10.3354/meps07943

Paul, V.J. & K. Van Alstyne. 1992. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar Biol. Ecol. 160:191- 203. https://doi.org/10.1016/0022-0981(92)90237-5

Pavia, H., G. Cervin, A. Lindgren & P. Áberg. 1997. Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 157: 139-146. https://doi.org/10.3354/meps157139

Pavia, H. & E. Brock. 2000. Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol. Prog. Ser. 193:285-294. https://doi.org/10.3354/meps193285

Puglisi, C.A. & V.J. Paul. 1996. Intraspecific chemical variation in the red alga Portieria hornemannii: monoterpene concentrations are not influenced by nitrogen or phosphorus enrichment. Mar Biol. 128: 161-170. https://doi.org/10.1007/s002270050079

Sacramento, A.T., P. García-Jiménez, R. Alcázar, A. Tiburcio & R.R. Robaina. 2004. Influence of polyamines on the sporulation of Grateloupia (Halymeniaceae, Rhodophyta). J. Phycol., 50:887-894. https://doi.org/10.1111/j.1529-8817.2004.03183.x

Sagor, G.H., T. Liu, H. Takahashi, M. Niitsu, T. Berberich & T. Kusano. 2013. Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana. Plant Cell Reports, 32: 1477-1488. https://doi.org/10.1007/s00299-013-1459-5

Shulaev, V. & D.J. Oliver. 2006. Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol. 141: 367-372. https://doi.org/10.1104/pp.106.077925

Swanson, A.K. & L.D. Druehl. 2002. Induction, exudation and the UV protective role of kelp phlorotannins. Aquatic Botany. 73: 241-253. https://doi.org/10.1016/S0304-3770(02)00035-9

Tang, W., R.J. Newton, C. Li & T.M. Charles. 2007. Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep., 26:115-124. https://doi.org/10.1007/s00299-006-0228-0

Tebayashi, S., Y. Horibata, E. Mikagi, T. Kashiwagi, D.B. Mekuria, A. Dekebo, A. Ishihara & C.S. Kim. 2007. Induction of resistance against the leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Biosci. Biotechnol. Biochem., 71: 1521-1526. https://doi.org/10.1271/bbb.70033

Tiburcio, A.F., J.L. Campos, X. Figueras & R.T. Besford. 1993. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Reg., 12: 331-340. https://doi.org/10.1007/BF00027215

Von Ropenack, E., A. Parr & P. Schulze-Lefert. 1998. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J. Biol. Chem., 273: 9013-9022. https://doi.org/10.1074/jbc.273.15.9013

Yoda, H., K. Fujimura, H. Takahashi, I. Munemura, H. Uchimiya & H. Sano. 2009. Polyamines as a common source of hydrogen peroxide in hostand nonhost hypersensitive response during pathogen infection. Plant Mol. Biol., 70: 103- 112. https://doi.org/10.1007/s11103-009-9459-0

Yoda, H., Y. Yamaguchi & H. Sano. 2003. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Physiol., 132: 1973-1982. https://doi.org/10.1104/pp.103.024737

Zacchini, M. & M. Agazio. 2004. Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol. Biochem., 42: 445-450. https://doi.org/10.1016/j.plaphy.2004.03.007

Zapata, P.J., M. Serrano, M.T. Pretel, A. Amorós & M.A. Botella. 2004. Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci., 167: 781-788. https://doi.org/10.1016/j.plantsci.2004.05.014

Downloads

Published

2015-06-27

How to Cite

Vergara -Rodarte, M. A., Murillo ílvarez, J. I., & Robaina Romero, R. (2015). Endogenous polyamine response in epiphytic Bonnemaisonia hamifera (Bonnemaisoniales: Rhodophyta) due to interaction with its host. CICIMAR Oceánides, 30(1), 1–8. https://doi.org/10.37543/oceanides.v30i1.169

Issue

Section

Articles