Metabolic balance of the polyp-algae mutualistic symbiosis in the hermatypic coral Porites panamensis in La Paz, Baja California Sur, Mexico.

Authors

  • S. D. Rico -Esenaro
  • M. Signoret -Poillon
  • J. Aldeco
  • H. Reyes -Bonilla

DOI:

https://doi.org/10.37543/oceanides.v29i1.129

Keywords:

Metabolic balance, hermatypic coral, respiration, mutualistic symbiosis, primary production

Abstract

Studies on metabolic balance in hermatypic corals have been unable to separate the analysis of
animal’s respiration from that of plant. The objective of this research was to determine the metabolic balance in the mutualistic symbiosis polyp-algae through incubations in respirometric chambers of twelve fragments of coral. The species studied Porites panamensis (Scleractinia: Poritidae), Verrill, 1866 was collected near La Paz, Baja California Sur, México. Experiments were  performed during fall 2009 and winter 2010. Water temperature, salinity, dissolved oxygen, pH, irradiance and photosynthetic pigments were measured every two hours during the incubation times. The concentration of pigments was  determined through spectrophotometry. The maximum primary production was at 12:00 h, with 3.80 mg O2∙l-1∙h-1 for fall and 4.92 mg O2∙l-1∙h-1 for  winter. According to the P : R (Production :  Respiration) ratio of 1.90 for fall and 2.07 for winter, the mutualistic symbiosis in P. panamensis showed a predominantly autotrophic behavior. The relative quotients of chlorophyll concentrations (mg∙polyp-1), Chl a : Chl c2, were 1.0 : 0.69 for fall and 1.0 : 1.22 for winter; while ratio of concentrations chlorophyll a : carotenes , Chl a : carotenes (both in mg∙polyp-1), were 1.0 : 2.13 for fall and 1.0 : 1.88 for winter. The high relative concentrations of Chl c2 and carotenes with respect to Chl a is explained as an adaptive response to high irradiance.

Downloads

Download data is not yet available.

References

Apprill, A.M., R.R. Bidigare & R.D. Gates. 2007. Visibly healthy corals exhibit variable pigment concentrations and symbiont phenotypes. Coral Reefs, 26: 387-397. https://doi.org/10.1007/s00338-007-0209-y

Barreiro, M.T. & M. Signoret. 1999. Productividad primaria en sistemas acuáticos costeros, métodos de evaluación. Serie Académicos. Universidad Autónoma Metropolitana, Unidad Xochimilco. Ciudad de México, 81p.

Bahgoli, R.A., H. Barid & P.J. Ralph. 2008. Does the coral host protect its algal symbionts from heat and light stresses? 113-117, in: Proceedings of the 11th International Coral Reef Symposium, Ft. Lauderdale.

Bold, H.C. & M.J. Wynne. 1985. Introduction to the algae: Structure and reproduction. Prentice-Hall, Englewood Cliffs, 720 p.

Brown, B.E., R.P. Dunne, I. Ambarsari, M.D.A. Letissier & U. Satapoomin. 1999. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Mar. Ecol. Progr. Ser., 191: 53-69. https://doi.org/10.3354/meps191053

Coles S.L. & P.L. Jokiel. 1977. Effects of Temperature on Photosynthesis and Respiration in Hermatypic Corals. Mar. Biol., 43: 209-216. https://doi.org/10.1007/BF00402313

Costa, C. F. R. Sassi & F.D. Amaral. 2005. Annual cycle of symbiotic dinoflagellates from three species of scleractinian corals from coastal reefs of northeastern Brazil. Coral Reefs, 24(2): 191-193. https://doi.org/10.1007/s00338-004-0446-2

Daniel, W. W. & J. C. Terrell, 1983. Business statistics. Houghton Mifflin Company. Boston. 700 p.

Falter, J.L., M.J. Atkinson. D.W. Schar, R.J. Lowe & S.G. Monismith. 2011. Short-term coherency between gross primary production and community respiration in an algaldominated reef flat. Coral Reefs, 30: 53-58. https://doi.org/10.1007/s00338-010-0671-9

Fagoonee, E., H.B. Wilson, M.P. Hassell, J.R. Turner. 1999. The dynamics of zooxanthellae populations: a long-term study in the Weld. Nature, 283: 843-845. https://doi.org/10.1126/science.283.5403.843

Fitt, W.K., F.K. McFarland, M.E. Warner & G.C. Chilcolat. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol. Oceanogr., 45(3): 677-685. https://doi.org/10.4319/lo.2000.45.3.0677

Gattuso, J.P., D. Allemand & M. Frankignoulle. 1999. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Amer. Zool., 39(1): 160-183. https://doi.org/10.1093/icb/39.1.160

Goreau, T. E. & N. Goreau. 1959. The physiology of skeleton formation in corals II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull., 117: 239-250. https://doi.org/10.2307/1538903

Glynn, P.W., S.B. Colley, C.M. Eakin, D.B. Smith, J. Cortes, N.J. Gassman, H.M. Guzman, J.B. Rosario & S. Feingold. 1994. Reef coral reproduction in the eastern Pacific: Costa Rica, Panamá, and Galápagos Islands (Ecuador). II. Poritidae. Mar. Biol., 118: 191-208. https://doi.org/10.1007/BF00349785

Hatcher, B. 1990. Coral Reef Primary Productivity: A hierarchy of pattern and process trends. Ecol. Evol., 5(5): 149-155. https://doi.org/10.1016/0169-5347(90)90221-X

Hochberg, E. J., M. Amy, M Apprill, J. Atkinson & R.R. Bidigare. 2006. Bio-optical modeling of photosynthetic pigments in corals. Coral Reefs, 25: 99-109. https://doi.org/10.1007/s00338-005-0071-8

Jeffrey, S.W. & F.T. Haxo. 1968. Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. Biol. Bull., 135(1): 149-165. https://doi.org/10.2307/1539622

Jeffrey, S.W. & G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen., 167: 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3

Jesser, M.P., C. Mazel, D. Phinney & C.S. Yentsch. 2000. Light absorption and utilization by colonies of the congeneric hermatypic corals Montastraea faveolata and Montastraea cavernosa. Limnol. Oceanogr., 45: 76-86. https://doi.org/10.4319/lo.2000.45.1.0076

Kanwisher J.W. & S.A. Wainwright. 1967. Oxygen Balance in Some Reef Corals Biol. Bull., 133(2): 378-390. https://doi.org/10.2307/1539833

LaJeunesse, T.C., H. Reyes-Bonilla, M.E. Warner, M. Wills, G.W. Schmidt & W.K. Fitt. 2008. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnol. Oceanogr., 53(2): 719-727. https://doi.org/10.4319/lo.2008.53.2.0719

López-Pérez, R.A. 2005. The Cenozoic hermatypic corals in the eastern Pacific: History. Earth Sci. Rev., 72: 67-87. https://doi.org/10.1016/j.earscirev.2005.04.002

Manzello D. & D. Lirman. 2003. The photosynthetic resilience of Porites furcata to salinity disturbance. Coral Reefs, 22: 537-540. https://doi.org/10.1007/s00338-003-0327-0

Marsh, J. A. Jr. 1970. Primary Productivity of reef-building calcareous red algae. Ecology, 51(2): 255-263. https://doi.org/10.2307/1933661

McCloskey, L. R., D.S. Wethey & J.W. Porter. 1978. Measurement of photosynthesis and respiration in reef corals. In: Stoddart D.R. & R. E. Johannes. Coral reefs: research methods. Reino Unido: Unesco Pub. 581 p.

Millero, F.J. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta, 4(59): 661-677. https://doi.org/10.1016/0016-7037(94)00354-O

Muscatine, L., L.R. McCloskey & R.E. Marian. 1981. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr., 26(4): 601- 611. https://doi.org/10.4319/lo.1981.26.4.0601

Moberg F., M. Nyström, N. Kautsky, M. Tedengren & P. Jarayabhand (1997). Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Mar. Ecol. Prog. Ser., 157: 53-59. https://doi.org/10.3354/meps157053

Osinga, R., M. Schutter, B. Griffioen, R.H. Wijffels, J.A.J. Verreth, S. Shafir, S. Henard, M. Taruffi, C. Gili & S. Lavorano. 2011. The biology and economics of coral growth. Mar. Biotechnol., 13(4): 658-671. https://doi.org/10.1007/s10126-011-9382-7

Riegl, B. & W.E. Piller. 2003. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci., 92: 520-531. https://doi.org/10.1007/s00531-003-0328-9

Signoret, M., H. Santoyo & A.G. Zapata. 1987. Balance metabólico de la asociación de corales hermatípicos-productores primarios en el arrecife de Isla Verde, Veracruz. In: 143-167, Memoria del V Simposio de Biología Marina. Universidad. Autónoma de Baja California Sur.

Roffman B. 1968. Patterns of oxygen exchange in some Pacific corals. Comp. Biochem. Physiol., 27: 405-418. https://doi.org/10.1016/0010-406X(68)90239-9

Strickland, J. & T. Parsons. 1972. A practical handbook of seawater analysis. Bulletin 167, Fisheries Research Board of Canada. 310 p.

Sunagawa, S., J. Cortés, C. Jiménez & R. Lara. 2008. Variación en la densidad de células y en las concentraciones de pigmentos de los dinoflagelados simbióticos del coral Pavona clavus en el Pacífico oriental (Costa Rica). Cienc. Mar., 32(2): 113-123.

Ulstrup, K.E., J. Ralph, A.W.D. Larkum & M. Kühl. 2006. Intra-colonial variability in light acclimation of zooxanthellae in coral tissues of Pocillopora damicornis. Mar. Biol., 149: 1325-1335. https://doi.org/10.1007/s00227-006-0286-4

Downloads

Published

2014-06-02

How to Cite

Rico -Esenaro, S. D., Signoret -Poillon, M., Aldeco, J., & Reyes -Bonilla, H. (2014). Metabolic balance of the polyp-algae mutualistic symbiosis in the hermatypic coral Porites panamensis in La Paz, Baja California Sur, Mexico . CICIMAR Oceánides, 29(1), 1–10. https://doi.org/10.37543/oceanides.v29i1.129

Issue

Section

Articles

Most read articles by the same author(s)