Copepod egg production rate in pelagic copepods in the Mexican Central Pacific

Authors

  • Sergio Herandez -Trujillo
  • Gabriela Ma. Esqueda Escárcega

DOI:

https://doi.org/10.37543/oceanides.v31i1.154

Keywords:

Copepods, Indicators, egg production rate, Central Pacific

Abstract

Estimates of secondary production through indicators from pelagic copepods under laboratory conditions were carried out in Mexican waters of the eastern tropical Pacific. Copepods were  collected during April 2015, separated and in three oceanographic stations off the coast of Guerrero, Mexico. Only Labidocera acutifrons, Subeucalanus pileatus and Centropages furcatus presented reproductive activity. Secondary production indicators were the rate of egg production (TPH), the mass-length relationship and condition factor. The species with the highest TPH and the highest value of condition factor (K) was Labidocera acutifrons. In all three species allometric growth was observed. This is the first estimate of secondary production for zooplankton in the Mexican Central Pacific. Thus it should be extended to a larger number of taxa and for a wider seasonal space-time scale

Downloads

Download data is not yet available.

References

Bird D.F. & Y.T. Praire. 1985. Practical guidelines for the use of zooplankton length-weight regression equations. J. Plankton Res., 7: 955-960. https://doi.org/10.1093/plankt/7.6.955

Blackwell, B., T. Seamans, D. Helon & R. Dolbeer. 2000. Early loss of Herring Gull glutches after egg-oiling. Wildlife Society Bulletin, 28(1): 70-75.

Bradford-Grieve, J. M. 1994. The marine fauna of New Zealand: Pelagic Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. National Institute of Water and Atmospheric Research, Wellington, Nueva Zelandia. 160 p.

Bradford-Grieve, J.M., E.L. Markhaseva, C.E.F. Rocha & B. Abiahy. 1999. Copepoda. In: Boltovskoy, D. (Ed.), South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp. 869-1098.

Checkley, D. M., M.J. Dagg & S. Uye. 1992. Feeding, excretion, and egg production by individuals and populations on the marine, planktonic copepods, Acartia spp. and Centropages furcatus. Journal of Plankton Research, 14(1):71-96. https://doi.org/10.1093/plankt/14.1.71

Christou, E.D. & G.C. Verriopoulos. 1993. Length, weight and condition factor of Acartia clausi (Copepoda) in the Eastern Mediterranean. Journal Marine Biology Association United Kingdom. 73: 343-353. https://doi.org/10.1017/S0025315400032902

Durbin, E.G. & A.G. Durbin. 1978. Length and weight relationships of Acartia clausi from Narragansett Bay, R.I. Limnol. Oceanogr., 23: 958-969. https://doi.org/10.4319/lo.1978.23.5.0958

Esqueda-Escárcega, G.M., S. Hernández-Trujillo, G. Aceves-Medina, S. Futema-Jiménez & J. R. Hernández-Alfonso. 2013. Pastoreo del microzooplancton en la Ensenada de la Paz, B.C.S., México. Latin American Journal of Aquatic Research, 41(3): 545-557.

Ekau W., H. Auel, K. Barz, M. Birkicht, S. Bröhl, C. Buchholz, F. Bucholz, A. Denda, L. Franceschinis, J. Frost, W. Hagen, A. Kunzmann, L. Lehnhoff, A. Miggel, F.J. Sartoris, S. Schiel, I. Schuffenhauer, J. Schulz, A. da Silva & H. Verheye. 2008. Productivity and Life Cycles of Plankton and Nekton in the Coastal Upwelling Area of the Benguela Shelf - Trophic and Physical-Chemical Control Mechanisms. Part 3. The Northern Namibian Benguela Upwelling System. Cruise Report No.07, Leg 2 - 3, Bremen/Hamburg University, 93 p.

Fager, E.W. & J.A. McGowan.1963. Zooplankton species groups in the North Pacific. Science. 140(3566): 453-460. https://doi.org/10.1126/science.140.3566.453

Froese, R. 2006. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. Journal of Applied Ichthyology, 22: 241-253. https://doi.org/10.1111/j.1439-0426.2006.00805.x

García-Pámanes, J. & J.R. Lara-Lara. 2001. Pastoreo por el microzooplancton en el golfo de California. Ciencias Marinas. 27(1): 73-90. https://doi.org/10.7773/cm.v27i1.387

George, D.G. & G.P. Harris. 1985. The effect of climate on long term changes in the crustacean zooplankton biomass of Lake Windermere, UK. Nature, 316: 536-539. https://doi.org/10.1038/316536a0

Gómez-Gutiérrez, J., R. Palomares-García, R. De Silva-Dávila, M. A. Carballido-Carranza & A. Martínez-López. 1999. Copepod daily egg production and growth rates in Bahía Magdalena, México. Journal of Plankton Research, 21(12): 2227-2244. https://doi.org/10.1093/plankt/21.12.2227

Hernández-Trujillo S., A. Zárate-Villafranco, R. Pacheco-Chávez, G.M. Esqueda-Escárcega, J.R. Hernández-Alfonso & G. Aceves-Medina. 2008. Variación estacional de la producción de huevos del copépodo calanoideo Centropages furcatus (Dana, 1852) en la Bahía de La Paz, México. Hidrobiológica, 18 (1, Suplemento):61-67.

Hernández-Trujillo S, G.M. Esqueda-Escárcega & S. Futema-Jiménez. 2013. Prediction Models of Copepods Biomass from the Mass-Length and Carbon Content-Length Relationship. J. Mar. Biol. Oceanogr., 2: 4.

Hernández-Trujillo S., G. M. Esqueda-Escárcega, S. Futema-Jiménez & R. Funes- Rodríguez. 2014. Relación peso-longitud de Labidocera diandra y Labidocera johnsoni (Calanoida: Pontellidae). Hidrobiológica, 24 (3): 303-306.

Irvine, K. 1995. Standing biomasses, production, spatial and temporal distributions of the crustacean zooplankton. The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Scientific Report of the UK/ SADC Pelagic Fish Resource Assessment Project, 69-83.

Irvine, K. & R. Waya. 1999. Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. Hydrobiology, 407: 191-205. https://doi.org/10.1023/A:1003711306243

Kalff, J. 2002. Limnology, Inland Water Ecosystems. Prentice Hall, Upper Saddle River, New Jersey.

Lavaniegos, B. & M. Ohman. 2007. Coherence of long-term variations of zooplankton in two sectors of the California Current System. Progress in Oceanography, 75(1): 42-69. https://doi.org/10.1016/j.pocean.2007.07.002

Mauchline, J. 1998. The Biology of calanoid copepods. Advances in Marine Biology, Academic Press, 710 p.

Palomares-García R., E. Suárez-Morales & S. Hernández-Trujillo. 1998. Catálogo de los copépodos (Crustacea) pelágicos del Pacifico Mexicano. Editorial y Litografía Regia de los Ángeles S. A. México D.F. 352p.

Palomares-García, R., A. Martínez & R. De Silva. 2003. Winter egg production rate of four calanoid copepod species in Bahía de la Paz, Mexico. 139-152, In: M.E. Hendrix (Ed.) Contributions to the study of the East Pacific Crustaceans 2. Instituto de Ciencias del Mar y Limnología UNAM.

Palomares-García R., J. Gómez-Gutiérrez, E. Kozak, C. Franco-Gordo & C. J. Robinson. 2013. Producción de huevos y distribución vertical de Centropages furcatus (Copepoda) en zonas oceánicas del Golfo de California. Hidrobioló- gica, 23 (2): 187-197

Razouls C., de Bovée F., J. Kouwenberg & N. Desreumaux. 2005-2012. Diversity and Geographic Distribution of Marine Planktonic Copepods. Available at http://copepodes.obs-banyuls.fr/en

Rennie, M.D. & R. Verdon. 2008. Evaluation of condition indices for the lake white fish, Coregonus clupeaformis. North American Journal of Fisheries Management, 28:1270-1293. https://doi.org/10.1577/M06-258.1

Satapoomin, S., T. G. Nielsen & P. J. Hansen. 2004. Andaman Sea copepods: spatio-temporal variations in biomass and production, and role in the pelagic food web. Marine Ecology Progress Series, 274: 99-122. https://doi.org/10.3354/meps274099

Trudel, M., S. Tucker, J. Morris, D. Higgs & D. Welch, D. 2005. Indicators of energetic status in juvenile coho and Chinook salmon. North American Journal of Fisheries Management, 25: 374-390. https://doi.org/10.1577/M04-018.1

Published

2016-06-24

How to Cite

Herandez -Trujillo, S., & Esqueda Escárcega, G. M. (2016). Copepod egg production rate in pelagic copepods in the Mexican Central Pacific. CICIMAR Oceánides, 31(1), 1–7. https://doi.org/10.37543/oceanides.v31i1.154

Issue

Section

Articles