Adhesion ability to coral mucus of isolated bacteria from Pocillopora sp. and Porites panamensis of California Gulf southeast

Authors

  • Irán Suárez González Universidad Autónoma de Baja California Sur
  • Oscar Piña Juarez
  • Maurilia Rojas Contreras Universidad Autónoma de Baja California Sur
  • Marco Antonio Cadena Roa
  • Ricardo Vázquez Juárez

DOI:

https://doi.org/10.37543/oceanides.v34i1.229

Keywords:

holobiont, microbiota, dot-blot, Bacillus, colonizes

Abstract

The study of coral microbiota is of fundamental importance for a better understanding of the processes that determine its association with the holobiont, however, little is known about the basic mechanisms of this association. In this research, the objective was to isolate from corals without apparent signs of disease, the predominant bacteria of the community, determine their ability to adhere to the mucus produced by Pocillopora sp. and identify them molecularly. Corals of the genera Pocillopora sp. and Porites panamensis were recollected, the population of four groups of microorganisms (expressed as Log of CFU g-1) was quantified. Results indicated aerobic mesophilic bacteria (4.7 - 6.4), lactic acid bacteria (Ë‚1.0-5.8), bacteria of the Vibrio genus (Ë‚ 1.0-4.5), as well as fungi and yeasts (Ë‚1.0-3.6). 156 bacterial strains of the homogenized holobiont were isolated and those with the highest growth at 24 h were selected for the adhesion test, which consisted of 25 strains of Pocillopora sp. and 27 of P. panamensis. The adhesion test to the enzymatically labeled with HRP crude mucus extract of Pocillopora sp., showed that 82% of the strains adhere. DNA was extracted from all strains, however, with the universal oligonucleotides used, only 32 PCR products were obtained. 14 strains from Pocillopora sp. and 18 from P. panamensis were molecularly identified based on the sequencing and analysis of the 16S DNAr gene. The strains identified corresponded to 17 species, where the genus Bacillus predominated, with 64% in Pocillopora sp. and 44% in P. panamensis. The species of bacteria that share these corals are B. subtilis and Staphylococcus hominis. It is suggested that the identified adherent species have the ability to colonize coral mucus, are commensal and potentially beneficial, because they were isolated from apparently healthy corals.

Downloads

Download data is not yet available.

References

Ainsworth, T.D., T.R. Vega & R.D. Gates. 2010. The future of coral reefs: a microbial perspective.Trends Ecol. Evol., 25:233-40. https://doi.org/10.1016/j.tree.2009.11.001

Azcarate-Peril, M.A., E.G. Altermann, R. Tallon, R.B. Sanozky-Dawes, E.A. Pfeiler, S. O'Flaherty, B.L. Buck, A. Dobson, T. Duong, M.J. Miller, R. Barrangou & T.R. Bäckhed, F., C.M. Fraser, Y. Ringel, M.E. Sanders, R.B. Sartor,

P.M. Sherman, J. Versalovic, V. Young & B.B. Finlay. 2012. Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host Microbe, 12:612-622. https://doi.org/10.1016/j.chom.2012.10.012

Banin, E., T. Israely, A. Kushmaro, Y. Loya, E. Orr & E. Rosenberg. 2000. Penetration of the Coral-Bleaching Bacterium Vibrio shiloi into Oculina patagonica. Appl. Environ. Microbiol., 66:3031-3036. https://doi.org/10.1128/AEM.66.7.3031-3036.2000

Banin, E., T. Israely, M. Fine, Y. Loya & E. Rosenberg. 2001. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett., 199: 33-37. https://doi.org/10.1111/j.1574-6968.2001.tb10647.x

Barbés, C. 2008. Lactobacilli En: Versalovic, J. & M. Wilson (Eds). Therapeutic Microbiology: Probiotics and Related Strategies, pp. 19-33. Washington, DC: ASM Press. https://doi.org/10.1128/9781555815462.ch3

Bourne, D., Y. Lida, S. Uthicke & C. Smith-Keune. 2008. Changes in coral-associated microbial communities during a bleaching event. ISME J., 2: 350-363. https://doi.org/10.1038/ismej.2007.112

Bourne, D. G. 2012. Corals form characteristic associations with symbiotic nitrogen fixing bacteria. Appl. Environ. Microbiol., 78: 3136-3144. https://doi.org/10.1128/AEM.07800-11

Bourne, D.G., K.M. Morrow & N. Webster. 2016. Insights into the Coral Microbiome: Underpinning the Health and Resilience of Reef Ecosystems. Annu. Rev. Microbiol., 70: 317-340. https://doi.org/10.1146/annurev-micro-102215-095440

Broda, D.M., P.A. Lawson, R.G. Bell & D.R. Musgrave. 1999. Clostridium frigidicarnis sp. nov., a psychrotolerant bacterium associated with 'blown pack' spoilage of vacuum-packed meats. Int. J. Syst. Bacteriol., 49: 1539-1550. https://doi.org/10.1099/00207713-49-4-1539

Brown, B.E. & J.C. Bythell. 2005. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser., 296: 291-309. https://doi.org/10.3354/meps296291

CONANP. 2006. Programa de Conservación y Manejo Parque Nacional Cabo Pulmo. 128 p. Comisión Nacional de Áreas Naturales Protegidas, Secretaría de Medio Ambiente y Recursos Naturales, México.

Carlos, C., T.T. Torres & L.M.M. Ottoboni. 2013. Bacterial communities and species-specific associations with the mucus of Brazilian coral species. Sci. Reps, 3: 1624. https://doi.org/10.1038/srep01624

Ducklow, W.H. & R. Mitchell. 1979a. Bacterial populations and adaptations in the mucus layers on living corals. Limnol. Oceanogr., 24: 715-725. https://doi.org/10.4319/lo.1979.24.4.0715

Ducklow, H.W. & R. Mitchell. 1979b. Observations on naturally and artificially diseased tropical corals: a scanning electron microscope study. Microb. Ecol., 5: 215-223.

https://doi.org/10.1007/BF02013528

Galloway, S.B., A.W. Bruckner & C.M. Woodley (Eds). 2009. Coral Health and Disease in the Pacific: Vision for Action. 314 p. NOAA Technical Memorandum NOS NCCOS 97 and CRCP 7. National Oceanic and Atmospheric Administration, Silver Spring, MD.

Götz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol., 43: 1367-1378. https://doi.org/10.1046/j.1365-2958.2002.02827.x

Hammes, W.P. & C. Hertel. 2006. The genera Lactobacillus and Carnobacterium. En: Dworkin, M., S. Falkow, E. Rosenberg, K.H. Schleifer & E. Stackebrandt. (Eds). The Prokaryotes: A Handbook on the Biology of Bacteria, pp 320-403. Vol. 4. Springer. https://doi.org/10.1007/0-387-30744-3_10

Henriksson, A. & P.L. Conway. 1996. Adhesion of Lactobacillus fermentum 104-S to porcine stomach mucus. Curr. Microbiol., 33: 31-34. https://doi.org/10.1007/s002849900069

Hernández-Agreda, A., R.D. Gates & T.D. Ainsworth. 2017. Defining the Core Microbiome in Corals' Microbial Soup. Trends Microbiol., 25 : 125-140. https://doi.org/10.1016/j.tim.2016.11.003

Hudson, L. & G.C. Hay. 1989. Antibody as a probe. En: Elaine, K. H. & J.P. Frances (Eds). Practical Immunology. pp 44-46. Blackwell Scientific Publications, London, UK.

Jatkar, A.A., B.E. Brown, J.C. Bythell, R. Guppy, N.J. Morris & J.P. Pearson. 2010. Coral Mucus: The Properties of Its Constituent Mucins. Biomacromolecules, 11: 883-888. https://doi.org/10.1021/bm9012106

Kellogg, C.A. 2004. Tropical Archaea: diversity associated with the surface microlayer of corals. Mar. Ecol. Prog. Ser., 273:81-88. https://doi.org/10.3354/meps273081

Kleerebezem, M., P. Hols, E. Bernard, T. Rolain, M. Zhou, R.J. Siezen & P.A. Bron. 2010. The extracellular biology of the lactobacilli. FEMS Microbiol. Rev., 34: 199-230

https://doi.org/10.1111/j.1574-6976.2009.00208.x

Krediet, C.J., K.B. Ritchie, V.J. Paul & M. Teplitski. 2013. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B., 280: 20122328.

https://doi.org/10.1098/rspb.2012.2328

Kvennefors, E.C.E, E. Sampayo, T. Ridgway, A.C. Barnes & O. Hoegh-Guldberg. 2010. Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site and Species-Specificity of Common Bacterial Associates. PLoS ONE, 5: e10401. https://doi.org/10.1371/journal.pone.0010401

Lebeer, S., J. Vanderleyden & S.C.J. De Keersmaecker. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev., 72: 728-764. https://doi.org/10.1128/MMBR.00017-08

Li, J., Q. Chen, L.J. Long, J.D, Dong, J. Yang & S. Zhang. 2014. Bacterial dynamics within the mucus, tissue, and skeleton of the coral Porites lutea during different seasons. Sci. Rep., 4:7320. https://doi.org/10.1038/srep07320

Lipp, E.K., J.L. Jarrell, D.W. Griffin, J. Lukasik, J. Jacukiewicz, J, & J.B. Rose. 2002. Preliminary evidence for human fecal contamination of corals in the Florida Keys, USA. Mar. Pollut. Bull., 44: 666-670.

https://doi.org/10.1016/S0025-326X(01)00332-0

Little, A.E.F., C.J. Robinson, S.B. Peterson, K.F. Raffa & J. Handelsman. 2008. Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol., 62, 375-401.

https://doi.org/10.1146/annurev.micro.030608.101423

López-Pérez, R.A., L.E. Calderón-Aguilera, H. Reyes-Bonilla, J D. Carriquiry-Beltran, P. Medina-Rosas, A.L. Cupul-Magaña, M.D. Herrero-Pé- rezrul, H.A. Hernández-Ramírez, M.Á. Ahumada Sempoal & B.M. Luna Salguero. 2012. Coral

communities and reefs from Guerrero, Southern Mexican Pacific. Mar. Ecol., 33(4), 407-416. https://doi.org/10.1111/j.1439-0485.2011.00505.x

Mao-Jones, J., K.B. Ritchie, L.E. Jones & S.P. Ellner. 2010. How Microbial Community Composition Regulates Coral Disease Development. PLoS Biol., 8:1-16. https://doi.org/10.1371/journal.pbio.1000345

McDevitt-Irwin, J.M., J.K. Baum, M. Garren & R.L. Vega. 2017. Responses of Coral-Associated Bacterial Communities to Local and Global Stressors. Front. Mar. Sci., 4:262.

https://doi.org/10.3389/fmars.2017.00262

Mouchka, M.E., I. Hewson & C.D. Harvell. 2010. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Comp. Biol., 50:662-674.

https://doi.org/10.1093/icb/icq061

Morrow, K.M., A.G. Moss, N.E. Chadwick & M. R. Liles. 2012. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl. Environ. Microbiol., 78(18): 6438-6449.

https://doi.org/10.1128/AEM.01162-12

Nousiainen, J., P. Javanainen, J. Setälä & A. von Wright. 2004. Lactic acid bacteria as animal probiotics. En: Salminen, S., A. von Wright & A.C. Ouwehand. (Eds). Lactic Acid Bacteria: Microbiological and Functional Aspects, pp 547-580. Marcel Dekker. https://doi.org/10.1201/9780824752033

Ouwehand, A.C. & S. Vesterlund. 2004. Antimicrobial components from lactic acid bacteria. En: Salminen, S., A. Von Wright & A. C. Ouwehand (Eds.). Lactic Acid Bacteria: Microbiological and Functional Aspects, pp 375-395. NY: Marcel Dekker. https://doi.org/10.1201/9780824752033.ch11

Patton, J.S., S. Abraham & A.A. Benson. 1977. Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar. Biol., 44: 235-247. https://doi.org/10.1007/BF00387705

Peixoto, R.S., P.M. Rosado, D.C.A. Leite, A.S. Rosado & D.G. Bourne. 2017. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front. Microbiol., 8: 341. https://doi.org/10.3389/fmicb.2017.00341

Porter, J.W., P. Dustan, W.C. Jaap, K.L. Patterson, V. Kosmynin, O.W. Meier, M.E. Patterson & M. Parsons. 2001. Patterns of spread of coral disease in the Florida Keys. Hydrobiología, 460: 1-24. https://doi.org/10.1007/978-94-017-3284-0_1

Reis, A.M.M., S.D. Araújo Jr., R.L. Moura, R.B. Francini-Filho, G. Pappas Jr., A.M.A. Coelho, R.H. Krüger & F.L. Thompson. 2009. Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J. Appl. Microbiol., 106: 1378-1387. https://doi.org/10.1111/j.1365-2672.2008.04106.x

Reshef, L., O. Koren, Y. Loya, I. Zilber-Rosenberg & E. Rosenberg. 2006. The Coral Probiotic Hypothesis. Environ. Microbiol., 8(12): 2068-2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x

Reyes-Bonilla, H., J. Carriquiry, G. Leyte-Morales & A. Cupul-Magaña. 2002. Effects of the El Niño-Southern Oscillation and the anti-El Niño event (1997-1999) on coral reefs of the western coast of México. Coral Reefs, 21: 368-372. https://doi.org/10.1007/s00338-002-0255-4

Reyes-Bonilla, H. & J.E. Barraza. 2003. Corals and associated marine communities from El Salvador. En: Cortés, J. (Ed). Latin American Coral Reefs. pp 351-360. Elsevier Science. https://doi.org/10.1016/B978-044451388-5/50016-3

Richards, J.D., J. Gong & C.F.M. de Lange. 2005. The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: current understanding, possible momodulations, and new technologies for ecological studies. Can. J. Anim. Sci., 85: 421-435. https://doi.org/10.4141/A05-049

Ritchie, K.B. & G.W. Smith. 2004. Microbial communities of coral surface mucopolysaccharide layers. En: Rosenberg, E. & Y. Loya (Eds). Coral Health and Disease, pp 259-263. Springer Verlag. https://doi.org/10.1007/978-3-662-06414-6_13

Ritchie, K.B. 2006. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser., 322: 1-14. https://doi.org/10.3354/meps322001

Rodríguez-Villalobos, J.C., A. Rocha-Olivares, T.M. Work, L.E. Calderón-Aguilera & J.A. Cáceres-Martínez. 2014. Gross and microscopic pathology of lesions in Pocillopora sp. from the subtropical eastern Pacific. J. Invertebr. Pathol., 120: 9-17. https://doi.org/10.1016/j.jip.2014.04.007

Rojas, M. & P.L. Conway. 2001. A dot-blot assay for adhesive components relative to probiotics. Methods Enzymol., 336:289-402.

https://doi.org/10.1016/S0076-6879(01)36603-X

Rojas, M., F. Ascencio & P.L. Conway. 2002. Purification and characterization of a surface protein from Lactobacillus fermentum 104 R that binds to porcine small intestinal mucus and gastric mucin. Appl. Environ. Microbiol., 68: 2330-2336. https://doi.org/10.1128/AEM.68.5.2330-2336.2002

Rosenberg, E., O. Koren, L. Reshef, R. Efrony & I. Zilber-Rosenberg. 2007. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol., 5: 355-362. https://doi.org/10.1038/nrmicro1635

Rosenberg, E., A. Kushmaro, E. Kramarsky-Winter, E. Banin & L. Yossi. 2009. The role of microorganisms in coral bleaching. ISME J., 3: 139-146. https://doi.org/10.1038/ismej.2008.104

Rohwer, F., M. Breitbart, J. Jara, F. Azam & N. Knowlton. 2001. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs, 20: 85-91. https://doi.org/10.1007/s003380100138

Rohwer, F. V. Seguritan, F. Azam & N. Knowlton. 2002. Diversity and distribution of coral-associated bacteria. Mar. Ecol.-Prog. Ser., 243:1-10. https://doi.org/10.3354/meps243001

Rohwer, F. & S. Kelley. 2004. Culture independent analyses of coral-associated microbes. En: Rosenberg, E. & Y. Loya (Eds). Coral Health and Disease, pp 265-277. Springer Verlag. https://doi.org/10.1007/978-3-662-06414-6_14

Rublee, P.A., H.R. Lasker, M. Gottfried & M.R. Roman. 1980. Production and bacterial colonization of mucus from the soft coral Briarum asbestinum. Bull. Mar. Sci., 30: 888-893.

Rypien, K.L., J.R. Ward & F. Azam. 2010. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol., 12: 28-39.

https://doi.org/10.1111/j.1462-2920.2009.02027.x

Santavy, D.L. & E.C. Peters. 1997. Microbial pests: coral disease research in the western Atlantic. Proc. 8th Int. Coral Reef Symp., 1: 607-612.

Shnit-Orland, M. & A. Kushmaro. 2009. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol., 67:371-380. https://doi.org/10.1111/j.1574-6941.2008.00644.x

Sunagawa, S., C.M. Woodley & M. Medina. 2010. Threatened Corals Provide Underexplored Microbial Habitats. PLoS ONE, 5: 1-7.

https://doi.org/10.1371/journal.pone.0009554

Sutherland K.P., J.W. Porter & C. Torres. 2004. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar. Ecol.-Prog. Ser., 266:273-302. https://doi.org/10.3354/meps266273

Thompson, J.H, E.A Shinn & T.J. Bright. 1980. Effects of drilling mud on seven species of reef-building corals as measured in the field and laboratory. Elsevier Oceanogr. Ser., 27: 433-453. https://doi.org/10.1016/S0422-9894(08)71393-X

Toren, A., L. Landau, A. Kushmaro, Y. Loya & E. Rosenberg. 1998. Effect of Temperature on Adhesion of Vibrio Strain AK-1 to Oculina patagonica and on Coral Bleaching. Appl. Environ. Microbiol., 64: 1379-1384. https://doi.org/10.1128/AEM.64.4.1379-1384.1998

Wegley, L., R. Edwards, B. Rodríguez-Brito, H. Liu & F. Rohwer. 2007. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol., 9: 2707-19. https://doi.org/10.1111/j.1462-2920.2007.01383.x

Wegley, K.L., A.F. Haas & C.E. Nelson. 2018. Ecosystem Microbiology of Coral Reefs: Linking Genomic, Metabolomic, and Biogeochemical Dynamics from Animal Symbioses to Reefscape Processes. Systems, 3: e00162-17. https://doi.org/10.1128/mSystems.00162-17

Wilson, M. 2005. Microbial Inhabitants of Humans: their ecology and role in health and disease. Ed. Cambridge, University Press.

https://doi.org/10.1017/CBO9780511735080

Weinbauer, M.G., J. Ogier & C. Maier. 2012. Microbial abundance in the coelenteron and mucus of the cold-water coral Lophelia pertusa and in the bottom water of the reef environment. Aquat. Biol., 16: 209-216. https://doi.org/10.3354/ab00443

Zhi-Ping, M., Y. Song, C. Zhong-Hua, L. Zhi-Jun Lin, L. Guang-Hui, Y. Wang & J. Zhou. 2018. Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the South China Sea. Front. Cell. Infect. Microbiol., 8:144. https://doi.org/10.3389/fcimb.2018.00144

Published

2019-05-24 — Updated on 2019-06-30

How to Cite

Suárez González, I., Piña Juarez, O., Rojas Contreras, M., Cadena Roa, M. A., & Vázquez Juárez, R. (2019). Adhesion ability to coral mucus of isolated bacteria from Pocillopora sp. and Porites panamensis of California Gulf southeast. CICIMAR Oceánides, 34(1), 17–27. https://doi.org/10.37543/oceanides.v34i1.229

Issue

Section

Articles