Primary productivity of coccoid cyanobacteria isolated from a coastal lagoon environment south of the Gulf of California.

Authors

  • Gerardo Verdugo -Dí­az CICIMAR
  • Aí­da Martí­nez -López
  • Bárbara González -Acosta

DOI:

https://doi.org/10.37543/oceanides.v33i2.237

Keywords:

prokaryotes culture, primary productivity, cyanobacteria

Abstract

The objective of this study was to determine the primary productivity of cyanobacteria grown under different nitrogen sources. 3 treatments were considered: 1) without a nitrogen source, 2) with nitrate (NO3), and 3) with ammonium (NH4). Incubations were carried out under controlled conditions. Cell densities were significantly higher in nitrate treatment. The maximums of biovolume (19.9 µm-3) and of carbon content (5.4 pg C cel-1) were observed in the stationary phase of the treatment with ammonia. The highest concentration of chlorophyll a in the exponential phase was recorded in the treatment without nitrogen (1,038 mg m-3), while the maximum in the stationary phase in the treatment with nitrates (0.65 mg m-3). The highest primary production was recorded in the exponential phase (23.9 mg C m-3 h-1), associated with treatment without a nitrogen source incubated at 150 µ E m-2 s-1; in the stationary phase the maximum (11.6 mg C m-3 h-1) was registered in the treatment enriched with nitrates at 75 µ E m-2 s-1.

Downloads

Download data is not yet available.

References

Agawin, N., S. Rabouille, M. Veldhuis, L. Servatius, S. Hol, O. Overzee & J. Huisman. 2007. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnol Oceanogr, 52(5); 2233-2248. https://doi.org/10.4319/lo.2007.52.5.2233

Alfonso, E. & S. Leal. 1998. Creación y Mantenimiento de un Cepario de Microalgas. Centro de Investigaciones Marinas, Universidad de La Habana. Habana, Cuba. 21 p.

Atlas, R.M. 2010. Handbook of microbiological media. CRC Press. 2036 p. https://doi.org/10.1201/EBK1439804063

Buitenhuis, E.T., W.K.W. Li, D. Vaulot, M.W. Lomas, M.R. Landry & F. Partensky. 2012. Picophytoplankton biomass distribution in the global ocean. J Earth Syst Sci, 4, 37-46. https://doi.org/10.5194/essd-4-37-2012

Branco dos Santos, F., W. Du & K.J. Hellingwerf. 2014. Synechocystis: Not Just a Plug-Bug for CO2, but a Green E. coli. Front. Bioeng Biotechnol, 2, 36. https://doi.org/10.3389/fbioe.2014.00036

Dismukes, G.C., D. Carrieri, N. Bennette, G.M. Ananyev & M.C. Posewitz. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotech, 19, 235-240 9. https://doi.org/10.1016/j.copbio.2008.05.007

Falkowski, P.G. & J. Raven. 1997. Aquatic photosynthesis. Blackwell Science. 375 p.

Falkowski, P.G. & J. La Roche. 1991. Acclimation to spectral irradiance in algae. J Phycol, 27, 8-14. https://doi.org/10.1111/j.0022-3646.1991.00008.x

Giovannoni, S. & M. Rappé. 2000. Evolution, diversity and molecular ecology of marine prokaryotes. 46-84. In: Kirchman, D.L. (Ed). Microbial ecology of the oceans. Wiley-Liss. Inc.

Jonte, L., N. Rosales, M. Yépez, B. Briceño & E. Morales. 2007. Respuesta de la cianobacteria Synechocystis minuscula a sustratos orgánicos en condiciones mixotróficas. Boletín del Centro de Investigaciones Biológicas, Universidad del Zulia, Maracaibo. Venezuela, 41(1):1-14p.

Kirchman, D.L. 2008. Introduction and overview. 1-26. In: Kirchman, D.L. (Ed). Microbial ecology of the oceans. Wiley-Liss. Inc.593 pp. https://doi.org/10.1002/9780470281840.ch1

Lucas, J.S. & A. Walsby. 2000. Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea. Eu J Phycol, 35: 97-108. https://doi.org/10.1080/09670260010001735681

Masuda, T., K. Furuya, T. Kodama, S. Takeda & P. Harrison. 2013. Ammonium uptake and dinitrogen fixation by the unicellular nano cyanobacterium Crocosphaera watsonii in nitrogen-limited continuous cultures. Limnol Oceanogr, 58(6):2029-2036. https://doi.org/10.4319/lo.2013.58.6.2029

Partensky, F., W.R. Hess & D. Vaulot. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol R, 63: 106-127. https://doi.org/10.1128/MMBR.63.1.106-127.1999

Steeman-Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. J Conseil, Perm International pour l'Exploration de la Mer, 18: 117-140. https://doi.org/10.1093/icesjms/18.2.117

Strickland J. & T. Parsons. 1972. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, 67(2): 311.

Verety, P., C. Robertson, C. Tronzo, M. Andrews, J. Nelson & M. Sieracki. 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr, 37(7): 1434-1446. https://doi.org/10.4319/lo.1992.37.7.1434

Westberry, T., M.J. Behrenfeld, D.A. Siegel & E. Boss. 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cy, 22, GB2024. https://doi.org/10.1029/2007GB003078

Downloads

Published

2018-11-22

How to Cite

Verdugo -Dí­az, G., Martí­nez -López, A., & González -Acosta, B. (2018). Primary productivity of coccoid cyanobacteria isolated from a coastal lagoon environment south of the Gulf of California. CICIMAR Oceánides, 33(2), 45–48. https://doi.org/10.37543/oceanides.v33i2.237

Issue

Section

Articles