Conversion factors for dry weight for the lion paw scallop (Nodipected subnodosus Sowerby, 1835)

Authors

  • Diana Carreño-León
  • Rosa Isela Vázquez-Sánchez
  • José Luis Ramirez-Arce
  • Armando Monge-Quevedo
  • Salvador E Lluch-Cota Centro de Investigaciones Biológicas del Noroeste

DOI:

https://doi.org/10.37543/oceanides.v38i1.283

Keywords:

ecophysiology, biometry, scallops, Aquaculture, fisheries

Abstract

The biomass of marine species must typically be expressed in terms of dry weight. Direct measurement, however, can be problematic under some operating situations. When fine-grained comparisons between individuals are not required, one solution that is widely utilized is the use of conversion factors, but these must be specific and generated using the best information available. Based on morphometric measurements of five independent groups of organisms with varying sizes and origins, this study suggests weight conversion factors for the lion paw scallop (Nodipecten subnodosus). In all cases, the measurements and sample processing techniques were the same. As predictors of dry weight, conversion factors based on the wet weight of soft tissue, the fresh weight of animals (including the shell), and the shell width are proposed. In all situations, the correlation coefficients for the models tested are significant. Given the short sample size, especially for the larger animals, it is suggested that the factors be re estimated in the future using a larger number of cases in the future.

 

 

Downloads

Download data is not yet available.

Author Biographies

Diana Carreño-León

 

 

Rosa Isela Vázquez-Sánchez

 

 

José Luis Ramirez-Arce

 

 

Armando Monge-Quevedo

 

 

References

Bar-On, Y.M., Phillips, R. Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Science 115(25), 6506-6511. DOI: 10.1073/pnas.1711842115. DOI: https://doi.org/10.1073/pnas.1711842115

Eklöf, J., Austin, Å., Bergström, U., Donadi, S., Eriksson, B.D.H.K., Hansen, J. & Sundblad, G. (2017). Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ 5:e2906. https://doi.org/10.7717/peerj.2906 DOI: https://doi.org/10.7717/peerj.2906

Eleftheriou, A. & Basford, D.J. (1989). The macrobenthic infauna of the offshore northern North Sea. Journal of the Marine Biological Association of the UK 69: 123-143 DOI: https://doi.org/10.1017/S0025315400049158

Lotze,H.K., Tittensor, D.P., Bryndum-Buchholz, A., Eddy, T.D., Cheung, W.W.L., Galbraith, Barange, M., Barrier, N., Bianchi, D., Blanchardi, J.L., Bopp, L., Büchner, M., Bulman, C., Carozza, D.A., Christensen, V., Coll, M., Dunne, J.O., Fulton, E., Jennings, S., Jones, M.C., Mackinson, S., Maury, O., Niiranen, S., Oliveros-Ramos, R., Roy, T., Fernandes, J.A., Schewe, J., Shing, Y., Silva, T., Steenbeek, J., Stock C.A., Verley, P., Volkholz, J., Walker, N., & Worm. B. (2019). Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Science 116(26): 12907-12912. DOI: 10.1073/pnas.1900194116. DOI: https://doi.org/10.1073/pnas.1900194116

Ponce Díaz, G., Massó-Rojas, A., Félix-Pico, E.F., Morales-Zárate, M.V., García, N., Lodeiros, C. & Lluch Cota, S. (2011). Nodipecten SPP. Como recurso pesquero pp.11-26. En: A.N. Maeda-Martínez & C. Lodeiros-Seijo (EDS.). Biología y cultivo de los moluscos pectínidos del género Nodipecten. Editorial Limusa, México

Pontavice, H., Gascuel, D., Reygondeau, G., Maureaud, A. & Cheung, W.W.L. (2019). Climate change undermines the global functioning of marine food webs. Global Change Biology 26: 1306-1318. DOI: 10.1111/gcb.14944. DOI: https://doi.org/10.1111/gcb.14944

Ricciardi, A. & Bourget, E. (1998). Weight-to-weight conversion factors for marine benthic macroinvertebrates. Marine Ecology Progress Series 163: 245-251 DOI: https://doi.org/10.3354/meps163245

Ruiz-Verdugo, C.A., Koch, V., Félix-Pico, E., Beltran-Lugo, A. I., Cáceres-Martínez, C., Mazon-Suastegui, J. M. & Caceres-Martínez, J. (2016). Scallop fisheries and aquaculture in Mexico. In Developments in Aquaculture and Fisheries Science (Vol. 40, pp. 1111-1125). Elsevier. DOI: https://doi.org/10.1016/B978-0-444-62710-0.00029-8

Rurnohr, H., Brey, T. & Ankar, S. (1987). A compilation of biometric conversion factors for benthic invertebrates of the Baltic Sea. Baltic Marine Biological Publication 9: l-56.

Sicard, M.T. (2006). Efecto de la oscilación térmica en la fisiología de la mano de león (Nodipecten subnodosus Sowerby, 1835). Tesis de doctorado, Universidad Autónoma de Nuevo León. 185 pp.

Trevallion, A., Ansell, A.D., Sivadas, P. & Narayanan, B. (1970). A preliminary account of two sandy beaches in South West India. Marine Biology l6:268-279. DOI: https://doi.org/10.1007/BF00347236

Widbom, B. (1984). Determination of average individual dry weights and ash-free dry weights in different sieve fractions of marine meiofauna. Marine Biology 84: 101-108. DOI: https://doi.org/10.1007/BF00394532

Downloads

Published

2023-09-29

How to Cite

Carreño-León, D., Vázquez-Sánchez, R. I., Ramirez-Arce, J. L., Monge-Quevedo, A., & Lluch-Cota, S. E. (2023). Conversion factors for dry weight for the lion paw scallop (Nodipected subnodosus Sowerby, 1835). CICIMAR Oceánides, 38(1), 1–7. https://doi.org/10.37543/oceanides.v38i1.283

Issue

Section

Articles

Funding data