Preliminary phytochemical and biological activity screening of Sargassum lapazeanum

Biological activity of S. lapazeanum

Authors

  • José Manuel Mendoza Álcala
  • Mauricio Muñoz Ochoa CICIMAR
  • Yoloxochitl Elizabeth Rodríguez Montesinos CICIMAR
  • Dora Luz Arvizu Higuera CICIMAR

DOI:

https://doi.org/10.37543/oceanides.v39i1.284

Keywords:

antioxidant, flavonoids, hemolytic, toxicity, triterpenes

Abstract

Algae are exposed to substantial stress. In response, these organisms have developed efficient defense systems, such as protective secondary metabolite synthesis, making algae a primary source of bioactive compounds with a wide spectrum of biological activities. Thus, algae show potential for use in treatments of thrombotic, infectious, and chronic degenerative diseases. Therefore, the objective of this study was to evaluate the phytochemical compounds and pharmacological activity of an extract obtained from Sargassum lapazeanum. Algae were collected in the intertidal zone of Tarabillas beach (Bahía de La Paz, BCS). The biological activities of an ethanolic extract and its fractions were evaluated using chromatographic techniques. In addition, a bioautographic assay of hemolytic activity was conducted, and phytochemical profiles and acute toxicity in Artemia franciscana were evaluated. The relationships among the main extract components were also determined. The ethanolic extract exhibited significant antioxidant and hemolytic activity, which was mainly attributed to its content of anthrones, anthraquinones, and unsaturated triterpenes. Its toxicological activity reached an LC50 value of 225.1 μg mL-1, which was mainly attributed to alkaloids, flavonoids, anthrones, and saponins. The results suggest that Sargassum lapazeanum, which is endemic to the Gulf of California, has great pharmacological potential with biomedical applications.

Downloads

Download data is not yet available.

Author Biographies

José Manuel Mendoza Álcala

Es exalumno y no tenemos ninguna referencia de su paradero

Mauricio Muñoz Ochoa, CICIMAR

Obtained his Bachelor’s in Biochemical Engineering (1997) from the Instituto Tecnológico de la Paz (ITLP) and his Master's (2004) and Doctorate (2007) from Centro Interdisciplinario de Ciencias Marinas of Instituto Politécnico Nacional (CICMAR). His research focuses on chemical ecology and natural marine products. He is currently conducting research on the use of algae as bioindicators of pollution and sources of bioactive (antibacterial, antioxidant, cytotoxic, and anticoagulant) compounds. He is the author of 23 scientific publications, 3 book chapters, and 2 popular articles. He has directed 4 Bachelor’s theses, 11 Master's theses, and 3 Doctorate theses. He is a member of the National System of Researchers (level 1).

Yoloxochitl Elizabeth Rodríguez Montesinos, CICIMAR

Obtained her Bachelor’s in Marine Biology (1989) from the Universidad Autónoma de Baja California Sur (UABCS) and her Master’s degree (1998) from the Centro Interdisciplinario de Ciencias Marinas of Instituto Politécnico Nacional (CICMAR). The research that she has conducted has focused on the study and production of algal polysaccharides of commercial interest and on the search for bioactive compounds from algae. She has published 30 scientific articles and 2 popular science articles. She has directed 1 Bachelor’s thesis and 2 Master's theses.

Dora Luz Arvizu Higuera, CICIMAR

Obtained here Bachelor’s degree in Biochemical Engineering (1988) from the Instituto Tecnológico de la Paz (ITLP) and her Master’s degree in Marine Sciences (1993) from the Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional (CICIMAR). Her research focuses on the production of algal polysaccharides for commercial use and on the search for bioactive compounds from algae. She has published 22 scientific articles and directed 1 Master's thesis. She currently participates in the Biotechnology Network of the Instituto Politécnico Nacional.

References

Amsler, C. (2008). Algal Chemical Ecology (1a ed.). Springer-Verlag Berlin Heidelberg. Germany. doi.org/10.1007/978-3-540-74181-7

Ara, J., Sultana, V., Ehteshamul-Haque, S., Qasim, R., & Ahmad, V. U. (1999). Cytotoxic activity of marine macro-algae on Artemia salina (Brine shrimp). Phytotherapy Research, 13(4), 304-307. doi.org/10.1002/(SICI)1099-1573(199906)13:4<304:AID-PTR439>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<304::AID-PTR439>3.3.CO;2-0

Asha Kanimozhi, S., Johnson M., & Renisheya Joy Jeba Malar, T. (2015). Phytochemical composition of Sargassum polycystum C. Agardh and Sargassum duplicatum J. Agardh. International Journal of Pharmacy and Pharmaceutical Sciences, 7(8), 393-397.

Daud, N., Mohd Noor, N. N., Alimon, H., & Rashid, N. A. (2015). Preliminary toxicity test and phytochemical screening of Sargassum polycystum crude extracts from marine macroalgae. ESTEEM Academic Journal, 11(1), 109-116.

Devi, J. A. I., Balan, G. S., & Periyanayagam, K. (2013). Pharmacognostical study and phyotochemical evaluation of brown seaweed Sargassum wightii. Journal of Coastal Life Medicine, 1(3), 199-204. doi:10.12980/JCLM.1.2013C959 DOI: https://doi.org/10.12980/JCLM.1.2013C959

Farfán-López, E. (2017). Variación de la composición química elemental de Sargassum horridum y su relación con la comunidad asociada, en el Sauzoso, Bahía de La Paz, B.C.S. México. Tesis de maestría. Centro Interdisciplinario de Ciencias Marinas-Instituto Politécnico Nacional. México. 145 pp.

Frikha, F., Kammoun, M., Hammami, N., Mchirgui, R. A., Belbahri, L., Gargouri, Y., Miled, N., & Ben-Rebah, F. (2011). Composición química y algunas actividades biológicas de algas marinas recolectadas en Túnez. Ciencias Marinas, 37(2), 113-124. doi.org/10.7773/cm.v37i2.1712 DOI: https://doi.org/10.7773/cm.v37i2.1712

Graham, L. E., & L. W. Wilcox. (2000). Algae. U.S.A. Prentice Hall.

Harborne, J. B. (1990). Methods in plant biochemistry: 1. In: Dey, P. M. & Harborne, J. B. (Eds.), Plant phenolics (pp. 283-323). London Academic Press. doi.org/10.1002/pca.2800020110

Indu, H., & Seenivasan, R. (2013). In vitro antioxidant activity of selected seaweeds from Southeast Coast of India. International Journal of Pharmacy and Pharmacautical Sciences, 5(2), 474-484.

Iyapparaj, P., Ramasubburayan, R., Raman, T., Das, N., Kumar, P., Palavesam. A., & Immanuel, G. (2012). Evidence for the antifouling potentials of marine macroalgae Sargassum wightii. Advances in Natural and Applied Sciences, 6(2), 153-162.

Kannan, R. R. R., Arumugarm, R., Meenakshi, S., & Anantharaman, P. (2010). Thin layer chromatography analysis of antioxidant constituens from seagrasses of Gulf of Mannar Biosphere Reserve, South India. International Journal of ChemTech Research, 2(3), 1526-1530.

Kannan, R. R. R., Arumugam, R., & Iyapparaj, P. (2013). In vitro antibacterial, cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chemistry, 136, 1484-1489. doi:10.1016/j.foodchem.2012.09.006 DOI: https://doi.org/10.1016/j.foodchem.2012.09.006

Kenndler, E. (2004). Introduction to chromatography. Institute for Analytical Chemistry. University of Viena.

Kurniatanty, I., Tan, M. I., Ruml, T., & Sumarsono, S. H. (2015). Potencial cell proliferation inhibitor isolated from Indonesian brown algae (Pheophyceae). International Journal of Pharmacy and Pharmaceutical Sciences, 7(11), 140-143.

Maschek, J. A., & B. J. Baker. (2008). The Chemistry of Secondary Metabolism. In: Amsler, C. D. (Ed). Algal Chemical Ecology (pp 1-24). Berlin, Heidelberg. Springer. doi.org/10.1007/978-3-540-74181-7_1 DOI: https://doi.org/10.1007/978-3-540-74181-7_1

McLaughlin, J. L., Rogers, L. L., & Anderson, J. E. (1998). The use of biological assays to evaluate botanicals. Drug Information Journal, 32, 513-524. doi.org/10.1177/009286159803200223 DOI: https://doi.org/10.1177/009286159803200223

Mehdinezhad, N., Ghannadi, A., & Yegdaneh, A. (2016). Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Research in Pharmaceutical Sciences, 11(3), 243-249.

Mole, M. N., & Sabale, A. B. (2014). Antimicrobial, antioxidant and hemolytic potential of brown macroalga Sargassum. World Journal of Pharmacy and Pharmaceutical Sciences, 3(8), 2091-2104.

Murillo-Álvarez J. I. (2001). Compuestos con actividad antimicrobiana y citotóxica aislados de recursos naturales de Baja California Sur, México. Tesis de Doctorado. Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, B. C. S. 447 pp.

Orhan, I., Wisespongpand, P., Atici, T., & Sener, B. (2003). Toxicity propensities of some marine and fresh-water algae as their chemical defense. Journal of Faculty of Pharmacy of Ankara University, 32(1), 19-29. doi.org/10.1501/Eczfak_0000000384

Park, S. Y., Seo, I. S., Lee, S. J., & Lee, S. P. (2015). Study on the health benefits of brown algae (Sargassum muticum) in volunteers. Journal of Food and Nutrition Research, 3(2), 126-130. doi.org/10.12691/jfnr-3-2-9 DOI: https://doi.org/10.12691/jfnr-3-2-9

Popov, A. M. A. (2002). A comparative study of the hemolytic and cytotoxic activities of triterpenoids isolated from ginseng and sea cucumbers. Biology Bulletin, 29, 120-128. doi.org/10.1023/A:1014398714718 DOI: https://doi.org/10.1023/A:1014398714718

Querellou, J., Børresen, T., Boyen, C., Dobson, A. D., Höfle, M. G., Ianora, A., Jaspars, M., Kijjoa, A., Olafsen J. A., Rigos, G., & Wijffels, R. H. (2010). Marine Biotechnology: A New Vision and Strategy for Europe. European Science Foundation, Marine Board., 15, Drukkerij De Windroos N. V. www.com.univ-mrs.fr/DIMAR/docs/marine_biotechnology_01.pdf DOI: https://doi.org/10.1007/978-90-481-8639-6_8

Raven, J. A., & Hurd, C. L. (2021). Ecophysiology of photosynthesis in macroalgae. Photosynth Research, 113, 105-125. doi.org/10.1007/s11120-012-9768-z DOI: https://doi.org/10.1007/s11120-012-9768-z

Rindi, F., Soler-Vila A., & Guiry, M. D. (2012). Taxonomy of marine macoalgae used as sources of bioactive compounds. In: Hayes, M. (Ed.) Marine Bioactive Compunds. pp. 1-53. Boston, M. A. Springer. doi.org/10.1007/978-1-4614-1247-2_1 DOI: https://doi.org/10.1007/978-1-4614-1247-2_1

Rocha-Ramírez, V., & Siqueiros-Beltrones, D. (1990). Review of the species of the genus Sargassum C. Agardh recorded for Bahia de La Paz, B.C.S., Mexico. Ciencias Marinas, 16(3), 15-26. https://doi.org/10.7773/cm.v16i3.702 DOI: https://doi.org/10.7773/cm.v16i3.702

Singh, R., Sharma, R., Mal, G., & Varshney, R. (2022). A comparative analysis of saponin-enriched fraction from Silene vulgaris (Moench) Garcke, Sapindus mukorossi (Gaertn) and Chlorophytum borivilianum (Santapau and Fernandes): an in vitro hemolytic and cytotoxicity evaluation. Animal Biotechnology, 33(1), 193-199. doi.org/10.1080/10495398.2020.1775627 DOI: https://doi.org/10.1080/10495398.2020.1775627

Srivastava, Y. (2013) (Ed). Advances in food science and nutrition. Science and Education Development Institute, Nigeria.

Subramanian, G., Stephen, J., Poornaselvi, M., & Anusha, M. B. (2014). Phytochemical screening, free radical scavenging and antioxidant activities of Sargassum vulgare. International Journal of Advances in Interdisciplinary Research, 1(5), 1-4.

Tovar del Rio, J. (2013). Determinación de la actividad antioxidante por DPPH y ABTS de 30 plantas recolectadas en la ecoregión cafetera. Tesis de licenciatura. Universidad Tecnológica de Pereira, Colombia 133 pp.

Yende, S. R., Harle, U. N., & Chaugule, B. B. (2014). Therapeutic potential and health benefits of Sargassum species. Pharmacognosy Reviews, 8(15), 1-7. doi:10.4103/0973-7847.125514 DOI: https://doi.org/10.4103/0973-7847.125514

Yuvaraj, N., & Arul, V. (2014). In vitro antitumor, anti-inflammatory, antioxidant and antibacterial activities of marine brown alga Sargassum wightii collected from Gulf of Mannar. Global Journal of Pharmacognosy, 8(4), 566-577. doi: 10.5829/idosi.gjp.2014.8.4.84281

Downloads

Published

2024-07-16

How to Cite

Mendoza Álcala, J. . M., Muñoz Ochoa, M., Rodríguez Montesinos, Y. E., & Arvizu Higuera, D. L. (2024). Preliminary phytochemical and biological activity screening of Sargassum lapazeanum: Biological activity of S. lapazeanum. CICIMAR Oceánides, 39(1), 1–10. https://doi.org/10.37543/oceanides.v39i1.284