Shell shape analyses of Anadara tuberculosa as a pollution indicator in mangroves.

Shell shape of A. tuberculosa and contamination in mangroves.

Authors

  • Ana Sánchez Aldás Universidad de Especialidades de Espiritu Santo image/svg+xml
  • René Rodríguez Grimón Universidad de Especialidades Espíritu Santo
  • Juan Moreno Instituto Público de Investigación de Acuicultura y Pesca
  • Jorge Guillermos Chollet-Villalpando Instituto Politécnico Nacional

DOI:

https://doi.org/10.37543/oceanides.v38i2.286

Keywords:

metales pesados, bivalvos, bioindicador, morfometría geométrica

Abstract

Mangroves are highly productive and essential ecosystems for numerous species. However, they have suffered significant losses due to the allocation of areas for industrial purposes, such as aquaculture and agriculture. The aim of this study was to determine if the variation in the shell shape of Anadara tuberculosa is related to the concentration of Cd and Pb in the soft tissue. Specimens were collected from three mangrove locations in mainland Ecuador. The Esmeraldas locality was used as a control site due to its low pollution index compared to the Guayas and El Oro sites, two provinces with a history of heavy metal contamination. Cartesian coordinates and geometric morphometrics methods were used to analyze the variation and variability of the shape of the right valve of A. tuberculosa. Canonical variable analysis indicated significant differences among the three locations, with the maximum shape variation located in the right portion of the shell. The concentrations of Cd and Pb in the tissue did not exceed the maximum allowable limit, although Guayas recorded the highest Cd concentration, approaching the limit. In terms of variability, Esmeraldas showed the highest value of morphological disparity. However, paired comparisons of disparity values between the control site and the locations with high Cd levels were not significant. Esmeraldas exhibited the most dissimilar shape in terms of partial disparity. These results suggest that heavy metal concentration leads to variation in the shape of the valve of A. tuberculosa, which is useful for distinguishing between study sites. The findings emphasize the need to monitor Cd levels in A. tuberculosa populations in the Guayas and El Oro provinces in order to conserve the mangrove ecosystem.

Downloads

Download data is not yet available.

References

Acosta, V. & Lodeiros, C. (2004). Metales pesados en la almeja Tivela mactroides. Born, 1778 (Bivalvia: Veneridae) en localidades costeras con diferentes grados de contaminación en Venezuela. Ciencias marinas, 30(2), 323-333. https://doi.org/10.7773/cm.v30i2.183

Acosta, V., Lodeiros, C., Nusetti, O. & Lemus, M. (2013). Biocumulación and effect of cadmium in juveniles the green mussel Perna viridis (L. 1758) (Mytiloida: Mytilidae). Saber, 25(1), 39-45. Recuperado de https://n9.cl/zd64a

Alamo, V. & Valdivieso, V. (1997). Lista sistemática de moluscos marinos del Perú. Segunda Edición, revisada y actualizada. Instituto del Mar del Perú, 1-183. https://repositorio.imarpe.gob.pe/bitstream/20.500.12958/1436/1/LISTA%20SISTEMATICA%20DE%20MOLUSCO.pdf

Almeida, M.J., Moura, G., Pinheiro, T., Machado, J., & Coimbraa, J. (1998). Modifications in Crassostrea gigas shell composition exposed to high concentrations of lead. Aquat. Toxicol. 40, 323e334. https://doi.org/10.1016/S0166-445X(97)00062-3

AOAC. (2019). Official Methods of Analysis of AOAC international. Edición 21. AOAC International, Gaithersburg, Maryland, USA.

Arrighetti, F., Landro, S.M., Lambre, M.E., Penchaszadeh, P.E., & Teso, V. (2019). Multiple-biomarker approach in the assessment of the health status of a novel Sentinel mussel Brachidontes rodriguezii in a harbor area. Mar. Pollut. Bull. 140,451e461. https://doi.org/10.1016/j.marpolbul.2019.02.002

Aydın, M., Biltekin, D., Breugelmans, K., & Backeljau, T. (2021). First record, dna identification and morphometric characterization of pacific oyster, Crassostrea gigas (thunberg, 1793) in the southern black sea. BioInvasions Records, 10(4), 838-852. https://doi.org/10.3391/bir.2021.10.4.08

Baird, C. M. & Cann, J. R. (2014). The accumulation and effects of trace metals in mangrove ecosystems. Marine Pollution Bulletin, 83(1), 190-201.

Beitl, C.M. & Gaibor, N. (2018). Rights-based Approaches in Ecuador's Fishery for Mangrove Cockles. Case Study for Tenure and User Rights in Fisheries in the Proceedings of the Food and Agricultural Organization of the United Nations - Tenure and User Rights in Fisheries. https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=1044&context=ant_facpub.

Belcheva, N.N., Zakhartsev, M., Silina, A.V., Slinko, E.N., & Chelomin, V.P. (2006). Relationship between shell weight and cadmium content in whole digestive gland of the Japanese scallop Patinopecten yessoensis (Jay). Mar. Environ. Res. 61, 396-409. https://doi.org/10.1016/j.marenvres.2005.12.001

Beltrán-Meléndez, D. A. & Gálvez-Rodríguez, J. M. (2022). Detección coliformes fecales, Escherichia coli y metales pesados (plomo, cadmio y mercurio) en agua y suelo en los manglares del Estero Soledad Grande en la Reserva Ecológica Manglares Churute-Ecuador. Tesis para el grado de Ingeniería Ambiental Facultad de Ciencias Natural. Repositorio de Universidad de Guayaquil. Recuperado de https://n9.cl/q6shb

Cabrera, L., Díaz, S., Parra, K. & Ojeda de Rodríguez, G. (2010). Detección de parásitos protozoarios y helmintos en el molusco bivalvo Geukensia demissa (Dillwyn, 1817) presente en el sector de Nazaret del Municipio Mara, Estado Zulia, Venezuela. Revista Científica. Recuperado de https://n9.cl/5w6ah

Carrasco-Peña, M. D. R. & Webster Coello, G. R. (2016). Capacidad bioacumuladora de metales pesados en moluscos bivalvos de los esteros del cantón Balao. Tesis para el post grado de Gestión Ambiental. Repositorio de Universidad del Azuay. Recuperado de https://dspace.uazuay.edu.ec/handle/datos/6480

Carvajal-Oses, M. D. M., Herrera-Ulloa, A., Valdés-Rodríguez, B. & Campos-Rodríguez, R. (2019). Manglares y sus servicios ecosistémicos: hacia un desarrollo sostenible. Gestión y ambiente, 22(2), 277-290. Recuperado 20/06/2023 de https://onx.la/f64ef

https://doi.org/10.15446/ga.v22n2.80639

Cedeño-Valdez, M. E. & Zambrano-Demera, D. E. (2017). Determinación de metales pesados Cd, Hg, Pb, en concha negra (Anadara tuberculosa) del Manglar el Salto-Esmeraldas y comparación para exportación al mercado europeo. Tesis para el grado de Químico Farmacéutico. Repositorio Universidad de Guayaquil. Recuperado de https://n9.cl/wx4sn

Corral, J., Machado, P. B., Freire, A. S. & Thorpe, J. P. (2000). Morphological variation in the clam Ruditapes decussatus (L.) from two estuaries in southern Portugal. Journal of Molluscan Studies, 66(4), 525-529.

FAO. (2022). El estado mundial de la pesca y la acuicultura 2022. Hacia la transformación azul. Roma, FAO. https://doi.org/10.4060/cc0461es

Franz, D. R. (1993). Allometry of shell and body weight in relation to shore level in the intertidal bivalve Geukensia demissa (Bivalvia: Mytilidae). Journal of Experimental Marine Biology and Ecology, 174(2), 193-207. https://doi.org/10.1016/0022-0981(93)90017-I

Gaspar, M.; Santos, M.; Vasconcelos, P. & Monteiro, C. (2002). Shell morphometric relationships of the most common bivalve species (Mollusca: Bivalvia) of the Algarve coast (southern Portugal). Hydrobiologia, 477: 73-80.

González, J. (2012). Estudio Comparativo De Patrones Morfométricos Del Mejillón Marrón Perna Perna (Linnaeus, 1758), De Varias Localidades Costeras Del Estado Sucre, Venezuela. Universidad de Oriente Nucleo de Sucre. http://ri2.bib.udo.edu.ve:8080/jspui/handle/123456789/3038

Gouveia, N., Oliveira, A. J., Harayashiki, C. A.Y., Souza, J. C., Longo, E., Cano, N. F., Maltez, H. F., Lourenco, R. A., Turpo-Huahuasoncco, K. V., & Castro, I. B. (2022). Chemical contamination in coastal areas alters shape, resistance and composition of carnivorous gastropod shells. Chemosphere, 135926. https://doi.org/10.1016/j.chemosphere.2022.135926

Gouveia, N., Yokota-Harayashiki C. A., Márquez F., Lourenço, R. A., Taniguchi, S. & Braga-Castro, I. (2022). Mollusc shell shape as pollution biomarkers: Which is the best biological model?, Marine Pollution Bulletin, 179, 113663. https://doi.org/10.1016/j.marpolbul.2022.113663

Guisande, C., Lise, A.V. & Felpeto, A.B. (2013). Tratamiento de datos con R, Statistica y SPSS. Madrid, España: Ediciones Díaz de Santos, 978p.

IPIAP- Instituto Público de Investigación de Acuicultura y Pesca de Ecuador. (2021). Investigación de los Recursos Bioacuáticos y su Ambiente. Reporte técnico interno.

Jordaens, K., De Wolf, H., Vandecasteele, B., Blust, R. & Backeljau, T. (2006). Associations between shell strength, shell morphology and heavy metals in the land snail Cepaea nemoralis (Gastropoda, Helicidae). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2005.12.002

Kasmini, L., Barus, T. A., Sarong, M. A., & Mulya, M. B. (2018). Morphometric study of pacific oyster (Crassostrea gigas) in the coastal area of Banda Aceh. Journal of Physics: Conference Series, 1116, 052037. https://doi.org/10.1088/1742-6596/1116/5/052037

Keen, A. M. (1971). Sea shells of tropical West America: Marine mollusks from Baja California to Peru, 2nd edition. Stanford University Press.

Krupnova, T. G., Mashkova, I. V., Kostryukova, A. M., Schelkanova, E. E., & Gavrilkina, S. V. (2017). Gastropods as potential biomonitors of contamination caused by heavy metals in South Ural lakes, Russia. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2017.12.005

Lozano-Pérez, A. G. & Mora-Solórzano, E. O. (2021). Determinación de la contaminación por cadmio y plomo en agua, sedimentos y Anadara tuberculosa en el área de manglar de Balao, Provincia de Guayas. Tesis para el grado de Ingeniería Ambiental. Facultad de Ciencias Naturales. Repositorio Universidad de Guayaquil. Recuperado de http://repositorio.ug.edu.ec/handle/redug/56787.

MAGAP & Concepto Azul. (2015). Manual práctico de concha prieta Anadara tuberculosa, en condiciones de extracción (Vol. 593).

Meera, S. P., Bhattacharyya M, Nizam A, & Kumar A. (2022). A review on microplastic pollution in the mangrove wetlands and microbial strategies for its remediation. Environ Sci Pollut Res Int. 29(4):4865-4879. https://doi.org/10.1007/s11356-021-17451-0

Mora, E., Flores, L., Moreno, J., & Guilbert, G. (2012). The mangrove cockles fishery in landing ports of Ecuador in 2011. Instituto Nacional de Pesca. Boletín Científico y Técnico. 22(1). 1-16 pp.

Morán, G. A., Martínez, J. J., Boretto, G. M., Gordillo, S., & Boidi, F. J. (2018). Shell morphometric variation of Ameghinomya antiqua (Mollusca, Bivalvia) during the Late Quaternary reflects environmental changes in North Patagonia, Argentina. Quaternary International, 490, 43-49. https://doi.org/10.1016/j.quaint.2018.05.027

Moreno, J. (2013). Situación pesquera del recurso concha prieta en los principales puertos de la provincia Esmeraldas durante el 2013. Instituto Nacional de Pesca. Recuperado de https://acortar.link/YUDli9.

Moschino, V., Bressan, M., Cavaleri, L., & Da Ros, L. (2015). Shell-shape and morphometric variability in Mytilus galloprovincialis from micro-tidal environments: responses to different hydrodynamic drivers. Marine Ecology, 36(4), 1440-1453. https://doi.org/10.1111/maec.12244

Moscoso-Cercado, M. J. (2021). Detección de coliformes fecales, Escherichia coli y SARS-COV-2 en el área de manglar de Balao Provincia del Guayas. Tesis para el grado de Ingeniería Ambiental. Repositorio Universidad de Guayaquil. Recuperado de http://repositorio.ug.edu.ec/handle/redug/56803.

Moura, P., Vasconcelos, P., & Gaspar, M. B. (2013). Age and growth in three populations of Dosinia exoleta (Bivalvia: Veneridae) from the Portuguese coast. Helgoland Marine Research, 67(4), 639-652. https://doi.org/10.1007/s10152-013-0350-7

Nava, F. & Severeyn, H. (2011). Variaciones morfológicas en la concha del gasterópodo Pyrgophorus platyrachis como posible respuesta a factores fisicoquímicos en el Sistema de Maracaibo, Venezuela. Ecotropicos. Recuperado de https://n9.cl/73hy2k.

Pernía, B., Mero, M., Cornejo, X. & Zambrano, J. (2019). Impactos de la contaminación sobre los manglares de Ecuador. Manglares de América, 1, 423-466. Recuperado de https://onx.la/f2aaa.

Petetta, A., Bargione, G., Vasapollo, C., Virgili, M., & Lucchetti, A. (2019). Length-weight relationships of bivalve species in Italian razor clam Ensis minor (Chenu, 1843) (Mollusca: Bivalvia) fishery. The European Zoological Journal, 86(1), 363-369. https://doi.org/10.1080/24750263.2019.1668066

Pradit, S., Shazili, N. A. M., Towatana, P., & Saengmanee, W. (2016). Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands. Bulletin of Environmental Contamination and Toxicology, 96(4), 472-477. https://doi.org/10.1007/s00128-015-1717-z

Primost, M. A., Averbuj, A., Bigatti, G. & Márquez, F. (2021). Embryonic shell shape as an early indicator of pollution in marine gastropods. Marine Environmental Research. (167), 105283. https://doi.org/10.1016/j.marenvres.2021.105283

Primost, M. A., Bigatti, G., & Márquez, F. (2015). Shell shape as indicator of pollution in marine gastropods affected by imposex. Marine and Freshwater Research, 67(12), 1948. https://doi.org/10.1071/MF15233

Proćków, M., Kuźnik‑Kowalska, E., Żeromska, A. & Mackiewicz, P. (2022). Temporal variation in climatic factors infuences phenotypic diversity of Trochulus land snails. Scientifc Reports, 12:12357. https://doi.org/10.1038/s41598-022-16638-w

Riani, E., Cordova, M.R., & Arifin, Z. (2018). Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Mar. Pollut. Bull. 133, 664e670. https://doi.org/10.1016/j.marpolbul.2018.06.029

Rico, J. P. (2017). Variación en la forma y estructura de la concha de neogastrópodos del Caribe colombiano, asociada al fenómeno de imposex (Tesis M. Sc., Universidad Nacional de Colombia-Sede Caribe). Recuperado de http://www.bdigital.unal.edu.co/64364/1/rico_mora_jeimmy_paola_tesis.pdf

Rodríguez-Grimón, R. O., Valenzuela-Cobos, J. D., Erazo-Delgado, J. C., Teran, N. I. D., Garcés-Moncayo, M. F., Grijalva-Endara, A. & Tierra-Arévalo, J. M. (2021). First study of water quality in the San Camilo and Mojahuevo estuaries located in Guayas for being used in aquaculture. Acta Periódica Tecnológica, (52), 55-62. https://doi.org/10.2298/APT2152055R

Rohlf, F. J. (2017). TPSDig2 (versión 2.30). Disponible en: https://sbmorphometrics.org/

Rohlf, F.J. & Slice, D. (1990). Extensiones del método Procrustes para la superposición óptima de puntos de referencia. Syst Zool 39(1):40-59. https://doi.org/10.2307/2992207

Rosas, M. C. (2001). Heavy metal concentrations in sediments and mangrove oysters (Crassostrea rhizophorae) in a mangrove lagoon in northwestern Mexico. Bulletin of Environmental Contamination and Toxicology, 66(4), 492-498.

Sabatini, S. & J. Calcagno. (2014). Los moluscos como bioindicadores. Chapter: 18 In book: Los invertebrados marinos (pp.193-196). Recuperado de https://n9.cl/hx98j

Scalici, M., Traversetti, L., Spani, F., Malafoglia, V., Colamartino, M., Persichini, T., Cappello, S., Mancini, G., Guerriero, G., & Colasanti, M. (2017). Shell fluctuating asymmetry in the sea-dwelling benthic bivalve Mytilus galloprovincialis (Lamarck, 1819) as morphological markers to detect environmental chemical contamination. Ecotoxicology, 26, 396e404. https://doi.org/10.1007/s10646-017-1772-9

Sheets, H.D. 2014a. MakeFan8, Version 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014b. CoordGen8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014d. SemiLand8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014d. Regress8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014e. PCAGen8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014f. CVAGen8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Sheets, H.D. 2014g. CVAGen8 DisparityBox8, Versión 1. Canisius College: Departamento de Física, Nueva York.

Smolarz, K., & Bradtke, K. (2011). Bioindicative potential of shell abnormalities occurring in the clam Macoma balthica (L.) from the Baltic Sea. Mar. Pollut. Bull. 62, 1421e1426. https://doi.org/10.1016/j.marpolbul.2011.04.031

Spalding, M. D. & Leal, M. (editors). (2021). The State of the World's Mangroves 2021. Global Mangrove Alliance. https://wwflac.awsassets.panda.org/downloads/the_state_of_the_worlds_mangroves___2021.pdf?368211/La-situacion-de-los-manglares-2021

Squires, HG., M. Estévez, M., Barona & Mora, O. (1975). Mangrove cockles, Anadara spp. (Mollusca: Bivalvia) of the Pacific coast of Colombia. Veliger, 18(1): 57-68.

Tapia, F. & Moreno, O. (2019). Manglares del Ecuador-Las Huacas. Recuperado de https://n9.cl/69rbe

Temino-Boes, R., Romero-López, R., & Romero, I. (2019). A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico. Water, 11(10), 2143. https://doi.org/10.3390/w11102143

UE (Unión Europea). (2006). Informes sobre las tareas de cooperación científica, Tarea 3.2.11 «Assessment of dietary exposure to arsenic, cadmium, lead and mercury of the population of the EU Member States» (http://ec.europa.eu/food/food/chemicalsafety/contaminants/scoop_3-2-11_heavy_metals_report_en.pdf). Recuperado de https://n9.cl/vgvy3

Valladares, A., Manríquez, G., & Suárez-Isla, B. A. (2010). Shell shape variation in populations of Mytilus chilensis (Hupe 1854) from southern Chile: a geometric morphometric approach. Marine Biology, 157(12), 2731-2738. https://doi.org/10.1007/s00227-010-1532-3

Yokota, C. A., Márquez, F., Cariou, E., & Castro, Í. B. (2020). Mollusk shell alterations resulting from coastal contamination and other environmental factors. Environmental Pollution, 114881. https://doi.org/10.1016/j.envpol.2020.114881

Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. (2012). Geometric morphometrics for biologists: a primer. academic press.

Published

2024-01-10

How to Cite

Sánchez Aldás, A., Rodríguez Grimón, R., Moreno, J., & Chollet-Villalpando, J. G. (2024). Shell shape analyses of Anadara tuberculosa as a pollution indicator in mangroves.: Shell shape of A. tuberculosa and contamination in mangroves. CICIMAR Oceánides, 38(2), 7–18. https://doi.org/10.37543/oceanides.v38i2.286