Nitrogen limitation and changes in salinity affects chemical-proximate-composition of Thalassiosira weissflogii

Authors

  • DIANA FIMBRES OLIVARRIA Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
  • Diana Medina Félix Universidad Estatal de Sonora
  • ELLA Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
  • EL Universidad Estatal de Sonora. Campus Hermosillo, Sonora, México.
  • ELLA Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
  • ELLA Universidad Estatal de Sonora. Campus Hermosillo, Sonora, México.

DOI:

https://doi.org/10.37543/oceanides.v38i1.290

Keywords:

Thalassiosira weissflogii, high salinity, nitrogen limitation

Abstract

Microalgae are a crucial factor in aquaculture activities, since they are used as live food in the larvae stage of shrimp, mollusks, and fish. Nevertheless, just a few microalga species are produce. In this study we evaluate the effect of salinity at 25, 35, 45 and 55 practical salinity unit (psu), in F/2 media as control group and two nitrogen (NaNO3) limited media, F/4 and F/8 on the diatom Thalassiosira weissflogii. To value the development of the diatom, kinetic growth curves, pH, biomass production and chemical-proximate composition were estimated. The highest growth rate and organic matter values were in media F/4 and 35 psu. Meanwhile, media F/8 at 55 psu presented the highest amount of ash and a very low growth rate. T. weissflogii is affected by high salinity concentration, however the limitation of nitrogen with 25 and 35 psu did not affect growth considerably. Concerning the chemical-proximate composition of T. weissflogii, media F/4 at 25 psu, presented the highest percentages of carbohydrates and proteins. In the same way, medium F2 at 25 psu, reported the highest amounts of carotenes. The results showed that high salinity was the variable that major affected the cell density, biomass production and chemical-proximate composition of T. weissflogii.

Downloads

Download data is not yet available.

References

BAEK, S. H., JUNG, S. W. & SHIN, K. 2011. Effects of temperature and salinity on growth of Thalassiosira pseudonana (Bacillariophyceae) isolated from ballast water. Journal of Freshwater Ecology, 26, 547-552. DOI: https://doi.org/10.1080/02705060.2011.582696

BERGES, J. A., VARELA, D. E. & HARRISON, P. J. 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress Series, 225, 139-146. DOI: https://doi.org/10.3354/meps225139

BOROWITZKA, M. A. 1997. Microalgae for aquaculture: opportunities and constraints. Journal of applied phycology, 9, 393-401. DOI: https://doi.org/10.1023/A:1007921728300

CEZARE-GOMES, E. A., MEJIA-DA-SILVA, L. D. C., PÉREZ-MORA, L. S., MATSUDO, M. C., FERREIRA-CAMARGO, L. S., SINGH, A. K. & DE CARVALHO, J. C. M. 2019. Potential of microalgae carotenoids for industrial application. Applied biochemistry and biotechnology, 188, 602-634. DOI: https://doi.org/10.1007/s12010-018-02945-4

CHEN, C.-Y., ZHAO, X.-Q., YEN, H.-W., HO, S.-H., CHENG, C.-L., LEE, D.-J., BAI, F.-W. & CHANG, J.-S. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10. DOI: https://doi.org/10.1016/j.bej.2013.03.006

DE LA ROCHA, C. L. & PASSOW, U. 2004. Recovery of Thalassiosira weissflogii from nitrogen and silicon starvation. Limnology and Oceanography, 49, 245-255. DOI: https://doi.org/10.4319/lo.2004.49.1.0245

FIMBRES-OLIVARRÍA, D., LÓPEZ-ELÍAS, J., MARTÍNEZ-CÓRDOVA, L., CARVAJAL-MILLÁN, E., ENRÍQUEZ-OCAÑA, F., VALDÉZ-HOLGUÍN, E. & MIRANDA-BAEZA, A. 2015. Growth and biochemical composition of Navicula sp. cultivated at two light intensities and three wavelengths. The Israeli Journal of Aquaculture-Bamidgeh. DOI: https://doi.org/10.46989/001c.20715

FULKS, W. & MAIN, K. 1991. The design and operation of commercial-scale live feeds production systems. Rotifer and Microalgae Culture Systems. The Oceanic Institute, Honolulu, HI, 3, 52.

GARCÍA MORALES, J., LÓPEZ ELÍAS, J. A., MEDINA FÉLIX, D., GARCÍA LAGUNAS, N. & FIMBRES OLIVARRÍA, D. 2020. Efecto del estrés por nitrógeno y salinidad en el contenido de b-caroteno de la microalga Dunaliella tertiolecta//Effect of nitrogen and salinity stress on the β-carotene content of the microalgae Dunaliella tertiolecta. DOI: https://doi.org/10.18633/biotecnia.v22i2.1241

GARCÍA, N., LÓPEZ-ELÍAS, J. A., MIRANDA, A., MARTÍNEZ-PORCHAS, M., HUERTA, N. & GARCÍA, A. 2012. Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin American Journal of Aquatic Research, 40, 435-440. DOI: https://doi.org/10.3856/vol40-issue2-fulltext-18

GARLOCK, T., ASCHE, F., ANDERSON, J., BJØRNDAL, T., KUMAR, G., LORENZEN, K., ROPICKI, A., SMITH, M. D. & TVETERÅS, R. 2020. A global blue revolution: Aquaculture growth across regions, species, and countries. Reviews in Fisheries Science & Aquaculture, 28, 107-116. DOI: https://doi.org/10.1080/23308249.2019.1678111

GOERICKE, R. & WELSCHMEYER, N. A. 1992. PIGMENT TURNOVER IN THE MARINE DIATOM THALASSIOSIRA WEISSFLOGII. II. THE 14CO2‐LABELING KINETICS OF CAROTENOIDS 1. Journal of phycology, 28, 507-517. DOI: https://doi.org/10.1111/j.0022-3646.1992.00507.x

GUILLARD, R. R. & RYTHER, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology, 8, 229-239. DOI: https://doi.org/10.1139/m62-029

HUERLIMANN, R., DE NYS, R. & HEIMANN, K. 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale‐up production. Biotechnology and bioengineering, 107, 245-257. DOI: https://doi.org/10.1002/bit.22809

KRZEMIŃSKA, I., PAWLIK-SKOWROŃSKA, B., TRZCIŃSKA, M. & TYS, J. 2014. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and biosystems engineering, 37, 735-741. DOI: https://doi.org/10.1007/s00449-013-1044-x

LAGE, S., TOFFOLO, A. & GENTILI, F. G. 2021. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere, 276, 130122. DOI: https://doi.org/10.1016/j.chemosphere.2021.130122

LAM, M. K. & LEE, K. T. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnology advances, 30, 673-690. DOI: https://doi.org/10.1016/j.biotechadv.2011.11.008

LATASA, M. 1995. Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances.

LEONG, Y. K. & CHANG, J.-S. 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresource technology, 303, 122886. DOI: https://doi.org/10.1016/j.biortech.2020.122886

LÓPEZ-ELÍAS, J., VOLTOLINA, D., CORDERO-ESQUIVEL, B. & NIEVES-SOTO, M. 2003. Producción comercial de larvas de camarón y microalgas en cuatro estados de la República Mexicana. Biotecnia, 5, 42-50.

LUO, X., SU, P. & ZHANG, W. 2015. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine drugs, 13, 4231-4254. DOI: https://doi.org/10.3390/md13074231

MAHER, S., KUMERIA, T., AW, M. S. & LOSIC, D. 2018. Diatom silica for biomedical applications: Recent progress and advances. Advanced healthcare materials, 7, 1800552. DOI: https://doi.org/10.1002/adhm.201800552

MARKOU, G., ANGELIDAKI, I. & GEORGAKAKIS, D. 2012. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied microbiology and biotechnology, 96, 631-645. DOI: https://doi.org/10.1007/s00253-012-4398-0

NOVOVESKÁ, L., ROSS, M. E., STANLEY, M. S., PRADELLES, R., WASIOLEK, V. & SASSI, J.-F. 2019. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine drugs, 17, 640. DOI: https://doi.org/10.3390/md17110640

OREN, A. 1999. Bioenergetic aspects of halophilism. Microbiology and molecular biology reviews, 63, 334-348. DOI: https://doi.org/10.1128/MMBR.63.2.334-348.1999

PERAZA-YEE, M. M., CARRANZA-DÍAZ, O., BERMUDES-LIZÁRRAGA, J. F., LÓPEZ-PERAZA, D. J., NIEVES-SOTO, M. & MILLÁN-ALMARAZ, M. I. 2022. The effect of major nutrients in five levels of an f medium on growth and proximal composition of Thalassiosira weissflogii. Latin american journal of aquatic research, 50, 110-123. DOI: https://doi.org/10.3856/vol50-issue1-fulltext-2749

RAI, M. P., GAUTOM, T. & SHARMA, N. 2015. Effect of salinity, pH, light intensity on growth and lipid production of microalgae for bioenergy application. OnLine Journal of Biological Sciences, 15, 260. DOI: https://doi.org/10.3844/ojbsci.2015.260.267

RICHMOND, A. 2008. Handbook of microalgal culture: biotechnology and applied phycology, John Wiley & Sons.

SHAH, M. R., LUTZU, G. A., ALAM, A., SARKER, P., KABIR CHOWDHURY, M., PARSAEIMEHR, A., LIANG, Y. & DAROCH, M. 2018. Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of applied phycology, 30, 197-213. DOI: https://doi.org/10.1007/s10811-017-1234-z

SHETTY, P., GITAU, M. M. & MARÓTI, G. 2019. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells, 8, 1657. DOI: https://doi.org/10.3390/cells8121657

SILVA-BENAVIDES, A. M. 2016. Evaluación de fertilizantes agrícolas en la productividad de la microalga Chlorella sorokiniana. Agronomía Mesoamericana, 27, 265-275. DOI: https://doi.org/10.15517/am.v27i2.24361

SIRAKOV, I., VELICHKOVA, K., STOYANOVA, S. & STAYKOV, Y. 2015. The importance of microalgae for aquaculture industry. Review. Int J Fish Aquat Stud, 2, 81-84.

TORRES-TIJI, Y., FIELDS, F. J. & MAYFIELD, S. P. 2020. Microalgae as a future food source. Biotechnology advances, 41, 107536. DOI: https://doi.org/10.1016/j.biotechadv.2020.107536

VALDÉS, F., HERNÁNDEZ, M., CATALÁ, L. & MARCILLA, A. 2012. Estimation of CO2 stripping/CO2 microalgae consumption ratios in a bubble column photobioreactor using the analysis of the pH profiles. Application to Nannochloropsis oculata microalgae culture. Bioresource technology, 119, 1-6. DOI: https://doi.org/10.1016/j.biortech.2012.05.120

VELICHKOVA, K. 2014. Effect of different nitrogen sources on the growth of microalgae Chlorella vulgaris cultivation in aquaculture wastewater. Agricultural science and technology, 6, 337-340.

VELLA, F. M., SARDO, A., GALLO, C., LANDI, S., FONTANA, A. & D'IPPOLITO, G. 2019. Annual outdoor cultivation of the diatom Thalassiosira weissflogii: productivity, limits and perspectives. Algal Research, 42, 101553. DOI: https://doi.org/10.1016/j.algal.2019.101553

VON ALVENSLEBEN, N., MAGNUSSON, M. & HEIMANN, K. 2016. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. Journal of applied phycology, 28, 861-876. DOI: https://doi.org/10.1007/s10811-015-0666-6

WU, Z., DUANGMANEE, P., ZHAO, P., JUNTAWONG, N. & MA, C. 2016. The effects of light, temperature, and nutrition on growth and pigment accumulation of three Dunaliella salina strains isolated from saline soil. Jundishapur Journal of Microbiology, 9. DOI: https://doi.org/10.5812/jjm.26732

ZHANG, R., KONG, Z., CHEN, S., RAN, Z., YE, M., XU, J., ZHOU, C., LIAO, K., CAO, J. & YAN, X. 2017. The comparative study for physiological and biochemical mechanisms of Thalassiosira pseudonana and Chaetoceros calcitrans in response to different light intensities. Algal research, 27, 89-98. DOI: https://doi.org/10.1016/j.algal.2017.08.026

ZUDAIRE, L. & ROY, S. 2001. Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii. Journal of Photochemistry and Photobiology B: Biology, 62, 26-34. DOI: https://doi.org/10.1016/S1011-1344(01)00150-6

Published

2024-07-11

How to Cite

FIMBRES OLIVARRIA , D., Medina Félix, D., García Lagunas, N., Gutierréz Ruacho, O. G., Huerta Aldaz, N., & ORTEGA ROSAS , C. I. (2024). Nitrogen limitation and changes in salinity affects chemical-proximate-composition of Thalassiosira weissflogii. CICIMAR Oceánides, 39(1), 11–20. https://doi.org/10.37543/oceanides.v38i1.290