Estimation of Taylor's Power Law parameters a and b for tidal marsh macrobenthic species.

Authors

  • M. N. Flynn
  • R. L. S. Pereira

DOI:

https://doi.org/10.37543/oceanides.v24i2.57

Keywords:

Salt marsh, macrobenthic fauna, spatial distribution, Taylor´s power law

Abstract

In the Cananeia region of southeastern Brazil, Spartina alterniflora marshes colonize tidal flats
fringing mangrove woodlands and displaying a zonation typical of monocultures. The pattern observed can be explained by the combined effects of organism resistance to emersion and physical dependence on the plants as habitat. In this context, it is interesting to quantify the aggregation index for the dominant species associated with the salt marsh. A tool which enables us to do it is Taylor´s power law, which combines the mean and the variance distributions of species in a known area. From August 1988 to January 1989, ten
random samples were taken monthly from the lower and upper marshes using a 20 cm diameter corer (0.03 m2) at a depth of 10 cm. The five most representative species of the system were selected for further analysis, and for each of these, Taylor´s power law parameters were calculated. Epifaunal species present aggregation indexes approaching randomness. The aggregation indexes for the infaunal species were observed to have consistently high values even in clearly different conditions of population density and availability of organic matter. The smaller number of infauna forms in the lower marsh as compared to the upper marsh does not point to a competitive disadvantage since there is no alteration in b values. For the infauna species only, the value of a shows a sharp decrease from the lower to the upper marsh. 

Downloads

Download data is not yet available.

References

Ascombe, F. J. 1949. The Statistical Analysis of Insect Counts Based on the Negative Binomial Distributions. Biometrics, 5: 165-173. https://doi.org/10.2307/3001918

Eisler, Z., I. Bartos & J. Kertész. 2008. Fluctuation scaling in complex systems: Taylor's law and beyond. Adv. Phys., 57: 89-142. https://doi.org/10.1080/00018730801893043

Flynn, M. N., A. S. Tararam & Y. Wakabara. 1996. Effects of habitat complexity on the structure of macrobenthic association in a Spartina alterniflora marsh. Braz. J. Oceanogr.,44 (1): 9-21. https://doi.org/10.1590/S1413-77391996000100002

Flynn, M. N., Y. Wakabara & A. S. Tararam. 1998. Macrobenthic associations of the lower and upper marshes of a tidal flat colonized by Spartina alterniflora in Cananeia lagoon estuarine region (southeastern Brazil). Bull. Mar. Sci., 63(2): 427-442.

Gaston, K. J., P. A. Borges, F. He, C. Gaspar. 2006. Abundance, spatial variance and occupancy: arthropod species distribution in the Azores. J. Anim. Ecol., 75: 646-656. https://doi.org/10.1111/j.1365-2656.2006.01085.x

He, F. & K.J. Gaston. 2003. Occupancy, spatial variance, and the abundance of species. Amer. Nat., 162, 366-375. https://doi.org/10.1086/377190

Kilpatrick, A. M. & A. R. Ives. 2003. Species interactions can explain Taylor's power law for ecological time series. Nature, 422:65-68. https://doi.org/10.1038/nature01471

Lana, P. C. & C. Guiss. 1992. Macrofauna-plant-biomass interactions in euhaline salt marsh in Paranagua Bay (SE Brazil). Mar. Ecol. Prog. Ser., 80: 57-64. https://doi.org/10.3354/meps080057

Rader, R. D. 1984. Salt-marsh benthic invertebrates: small scale patterns of distribution and abundance. Estuaries, 7: 413-420. https://doi.org/10.2307/1351622

Schaeffer-Novelli, Y., H. S. L. Mesquita & B. Cintron-Molero. 1990. The Cananeia lagoon estuarine system, São Paulo, Brazil. Estuaries, 13: 193-203. https://doi.org/10.2307/1351589

Taylor, L. R. 1961. Aggregation, variance and the mean. Nature, 189: 732-735. https://doi.org/10.1038/189732a0

Taylor, L. R. 1970. Agregation and the transformation of counts of Aphis fabae Scop. on beans. Ann. Appl. Biol., 65: 181-189. https://doi.org/10.1111/j.1744-7348.1970.tb04577.x

Taylor, L. R. 1977. Migration and the spatial dynamics of an aphid. J. Anim. Ecol., 46: 411-423. https://doi.org/10.2307/3820

Taylor, L. R., I. P. Woiwod & J. N. Perry. 1979. The negative binomial as a dynamic ecological model for aggregation, and the density dependence of k. J. Anim. Ecol., 48: 289-304. https://doi.org/10.2307/4114

Taylor, L. R. & I. P. Woiwod. 1982. Comparative synoptic dynamics: 1. Relationships between interspecific and intraspecific spatial and temporal variance-mean population parameters. J. Anim. Ecol., 51: 879-906. https://doi.org/10.2307/4012

Tokeshi, M. 1995. On the mathematical basis of the variance-mean power relationship. Res. Popul. Ecol., 37(1): 43-48. https://doi.org/10.1007/BF02515760

Zar, J.H. 1999. Biostatistical Analysis. 4 ed. Prentice-Hall, Upper Saddle River.

Published

2009-12-04

How to Cite

Flynn, M. N., & Pereira, R. L. S. (2009). Estimation of Taylor’s Power Law parameters a and b for tidal marsh macrobenthic species. CICIMAR Oceánides, 24(2), 85–90. https://doi.org/10.37543/oceanides.v24i2.57

Issue

Section

Articles