Efecto de cuatro pretratamientos en el flujo y balance del nitrógeno y el fósforo en efluentes de un sistema de recirculación acuícola
DOI:
https://doi.org/10.37543/oceanides.v31i2.183Palabras clave:
Lodos, pretratamientos, balance de masas, sistemas de recirculación acuícolaResumen
Los efluentes de un tipo de cultivo intensivo como los Sistemas de Recirculación Acuícola (SRA)
presentan altas concentraciones de lodos que pueden llegar a ser una fuente de contaminación si no son tratados y dispuestos apropiadamente. La digestión anaeróbica es usualmente empleada para llevar a cabo la degradación de los lodos. Los pretratamientos previos a la digestión anaeróbica pueden mejorar la degradación de los lodos, así
como reducir la carga de nitrógeno y fósforo a través de la actividad microbiana. Este estudio examinó el efecto de cuatro pretratamientos (biológico, químico, mecánico y térmico) en el flujo y balance de masas de N y P de efluentes de un SRA durante un periodo de 7 meses a temperatura ambiente. En cada mes se llevó a cabo un experimento de 15 días. Todos los pretratamientos a excepción del químico, eliminaron nitrógeno (térmico 29.78%, biológico 36.75%, control 42.25%, mecánico 49.46%, químico -7.68%). Todos los pretratamientos produjeron fósforo (químico 1.96%, mecánico 16.07%, térmico 24.37%, biológico 32.39%, control 58.60%). Nuestros resultados indican que el pretratamiento mecánico fue el más efectivo para eliminar N. En contraste, ninguno de los pretratamientos redujo la concentración de fósforo.
Descargas
Citas
APHA 1989. Standard methods for the examination of water and wastewater, 17th edition. Washington, D.C.
Appels, L., J. Baeyens, J. Degreve & R. Dewil. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energ. Combust., 34: 756-781. https://doi.org/10.1016/j.pecs.2008.06.002
Appels, L., J. Degreve, B. Van del Bruggen, J. Van Impe & R. Dewil. 2010. Influence of low temperature thermal pretreatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technol., 101: 5743-5748. https://doi.org/10.1016/j.biortech.2010.02.068
Audrey, P., L. Julien, D. Christophe & L. Patrick. 2011. Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach. Biochem. Eng. J., 54: 178-184. https://doi.org/10.1016/j.bej.2011.02.016
Ariunbaatar, J., A. Panico, G. Esposito, F. Pirozzi, & P.N.L. Lens. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ., 123: 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035
Boltz, D. F. 1958. Colorimetric determination of nonmetals. John Wiley & Sons, New York, NY. 372 p.
Bougrier, C., C. Albasi, J.P. Delgenes & H. Carrere. 2006. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process., 45: 711-718. https://doi.org/10.1016/j.cep.2006.02.005
Carballa, M., C. Duran & A. Hospido. 2011. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ. Sci. Technol., 45: 10306-10314. https://doi.org/10.1021/es201866u
Carrere, H., C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenes, J.P. Steyer & I. Ferrer. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater., 183: 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129
Chavez-Crooker, P. & J. Obreque-Contreras. 2010. Bioremediation of Aquaculture wastes. Curr. Opin. Biotech., 21: 313-317. https://doi.org/10.1016/j.copbio.2010.04.001
Chen, S.L., D.E. Coffin, & R.F. Malone. 1997. Sludge production and management for recirculating aquaculture systems. J. World Aquacult. Soc., 28: 303-315. https://doi.org/10.1111/j.1749-7345.1997.tb00278.x
Conroy, J. & M. Couturier. 2010. Dissolution of minerals during hydrolysis of fish waste solids. Aquaculture, 298: 220-225. https://doi.org/10.1016/j.aquaculture.2009.11.013
Eggeman, T. & R.T. Elanderb. 2005. Process and economic analysis of pretreatment technologies. Bioresource Technol., 96: 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017
Ennoun, H., B. Miladi, S. Zahedi-Díaz, L.A. Fernández-Guelfo, R. Solera, M. Hamdi & H. Bouallagui. 2016. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial water activated Sludge. Bioresource Technol., 214: 184-191. https://doi.org/10.1016/j.biortech.2016.04.076
Estuardo, C., M.C. Marti, C. Huili Huiliñir, E.A. Lillo & M.R. von Bennewitz, 2008. Improvement of nitrate and nitrite reduction rates prediction. Electron. J. Biotech., 11: 10. https://doi.org/10.2225/vol11-issue3-fulltext-6
Ferrer, I., S. Ponsa, F. Vásquez & X. Font. 2008. Increasing biogas production by thermal (70oC) sludge pretreatment prior to thermophilic anaerobic digestion. Biochem. Eng. J., 42: 186-192. https://doi.org/10.1016/j.bej.2008.06.020
Fontenot, Q., C. Bonvillain, M. Kilgen & R. Boopathy. 2007. Effects of temperature, salinity and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technol., 90: 1700-1703. https://doi.org/10.1016/j.biortech.2006.07.031
Food and Agriculture Organization of the United Nations. 2014. The state of world fisheries and aquaculture. 230 p.
Frison N., E. Katsou, S. Malamis & F. Fatone. 2016. A novel scheme for denitrifying biological phosphorus removal via nitrite from nutrientrich anaerobic effluents in a sort-cut sequencing batch reactor. J. Chem. Technol. Biot., 91:190-197. https://doi.org/10.1002/jctb.4561
García, J.L., B.K.C. Patel & B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6: 205-226. https://doi.org/10.1006/anae.2000.0345
Gavalla, H.N., I. Angelidaki & B.K. Ahring. 2003. Kinetics and modeling of anaerobic digestion process. Adv. Biochem. Eng. Biotechnol., 81: 58-93. https://doi.org/10.1007/3-540-45839-5_3
Ge, H., P.D. Jensen & D.J. Batstone. 2010. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Water Res., 44: 123-130. https://doi.org/10.1016/j.watres.2009.09.005
Hall, A.G., E.M. Hallerman & G.S. Libey. 2002. Comparative analysis of performance of three biofilter designs in recirculating aquaculture systems. In: Proceedings of the 4th International Conference on Recirculating Aquaculture. https://doi.org/10.21061/ijra.v3i1.1457
Hiraoka, M., N. Takeda, S. Sakai & A. Yasuda. 1985. Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci. Technol., 17:529-539. https://doi.org/10.2166/wst.1985.0157
Jin, H., Y. Jin, R.B. Mahar, Z. Wang & Y. Nie. 2008. Effects and model of alkaline waste activated sludge treatment. Bioresource Technol., 99: 5140-5144. https://doi.org/10.1016/j.biortech.2007.09.019
Kim, M., D.-W. Han & D.-J. Kim. 2015. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment. Bioresource Technol., 190: 522-528. https://doi.org/10.1016/j.biortech.2015.01.106
Lahav, O., J. Bar Massada, D. Yackoubov, R. Zelikson, N. Mozes, Y. Ta & S. Tarre. 2009. Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system. Aquaculture, 288: 76-82. https://doi.org/10.1016/j.aquaculture.2008.11.020
Lee, D., M. Kim & J. Chung. 2007. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process. J. Biosci. Bioeng., 103: 338-344. https://doi.org/10.1263/jbb.103.338
Li, H., Y. Jin, R.B. Mahar, Z. Wang & Y. Nie. 2008. Effect and model of alkaline waste activated sludge treatment. Bioresource Technol., 99: 5140-5144. https://doi.org/10.1016/j.biortech.2007.09.019
Li, Y.Y. & T. Noike. 1992. Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment. Water Sci. Technol., 26: 857-866. https://doi.org/10.2166/wst.1992.0466
Liao, X., H. Li, Y. Zhang, C. Liu & Q. Chen. 2016. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int. Biodeter. Biodegr., 106: 141-149. https://doi.org/10.1016/j.ibiod.2015.10.023
Liu, W., G. Luo, H. Tan, & D. Sun. 2016. Effects of Sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor. Aquacultural Eng., 72/73: 58-64. https://doi.org/10.1016/j.aquaeng.2016.04.002
Mariscal-Lagarda, M.M. & F. Páez-Osuna. 2014. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum MIll) with low salinity groundwater: A short communication. Aquacult. Eng., 58: 107-112. https://doi.org/10.1016/j.aquaeng.2013.12.003
Mirzoyan, N., S. Parnes, A. Singer, Y. Tal, K. Soers & A. Gross. 2008. Quality of brackish aquaculture sludge and its sustainability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture, 279: 35-41. https://doi.org/10.1016/j.aquaculture.2008.04.008
Mirzoyan, N., Y. Tal & A. Gross. 2010. Anaerobic digestion of sludge from intensive recirculating aquaculture systems: Review. Aquaculture, 306: 1-6. https://doi.org/10.1016/j.aquaculture.2010.05.028
Mouneimme, A.H., H. Carrere, N. Bernet, & J.P. Delgenes. 2003. Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresource Technol., 90: 89-94. https://doi.org/10.1016/S0960-8524(03)00091-9
Nah, I.W., Y.W. Kang, K.-Y. Hwang & W.-K. Song. 2000. Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res., 34: 2362-2368. https://doi.org/10.1016/S0043-1354(99)00361-9
Neyens E. & J. Baeyens. 2003. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater., 98: 51-67. https://doi.org/10.1016/S0304-3894(02)00320-5
Novak, J.T., M.E. Sadler & S.N. Murthy. 2003. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res., 37: 3136-3144. https://doi.org/10.1016/S0043-1354(03)00171-4
Nydahl, F., 1976. On the optimum conditions for the reduction of nitrate to nitrite by cadmium. Talanta, 23: 349-357. https://doi.org/10.1016/0039-9140(76)80047-1
Obaja, D., S. Mace, J. Costa, C. Sans & J. Mata-Álvarez. 2003. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technol., 87: 103-111. https://doi.org/10.1016/S0960-8524(02)00229-8
Park, S.K., H.M. Jang, J.H. Ha, J.M. Park. 2014. Sequential sludge digestion after diverse pretreatment conditions: Sludge removal, methane production and microbial community changes. Bioresource Technol., 162: 331-340. https://doi.org/10.1016/j.biortech.2014.03.152
Pitts, M.E. & J.H. Adams. 1987. Method for total nitrogen in freshwater and wastewater samples. 849-858, In: Proceedings of the AWWA 1986 Water Technology Conference: Advances in water analysis and treatment. American Water Works Association. Denver, CO.
Puigagut, J., H. Angles, F. Chazarenc & Y. Comeau. 2011. Decreasing phosphorus discharge in fish farm ponds by treating the sludge generated with sludge drying beds. Aquaculture, 318: 7-14. https://doi.org/10.1016/j.aquaculture.2011.04.025
Rustian, E., J.P. Delgenes, N. Bernet & R. Moletta. 1997. Nitrate reduction in acidogenic reactor: influence of wastewater COD/N-NO 3 ratio on denitrification and acidogenic activity. Environmental Technol., 18: 309-315. https://doi.org/10.1080/09593330.1997.9618500
SAS. 2002. SAS system for Windows. SAS Institute Inc., Cary, NC. USA.
Seviour, T., B.C. Donose, M. Pijuan & Z. Juan. 2010. Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environ. Sci. Technol., 44: 4729-4734. https://doi.org/10.1021/es100362b
Sharrer, M., K. Rishel, A. Taylor, B.J. Vinci & S.T. Summerfelt. 2010. The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresource Technol., 101: 6630-6641. https://doi.org/10.1016/j.biortech.2010.03.101
Sletten, O. & C.M. Bach. 1961. Modified stannous chloride reagent for orthophosphate determination. Am. Water Work. Assoc., 53: 1031-1033. https://doi.org/10.1002/j.1551-8833.1961.tb00742.x
Solórzano, L. 1969. Determination of ammonia in natural waters by the phenolhyochlorite method. Limnol. Oceanogr., 14: 751-754.
Solórzano, L. & J.H. Sharp. 1980. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr., 25: 751-754. https://doi.org/10.4319/lo.1980.25.4.0751
Steward, N.T., G.D. Boardman & L.A. Helfrich. 2006. Characterization of nutrient leaching rates from settled rainbow trout (Oncorhynchus mykiss) sludge. Aquacult. Eng., 35: 191-198. https://doi.org/10.1016/j.aquaeng.2006.01.004
Sugiura, S.H., D.D. Marchant, T. Wiggins & R.P. Ferraris. 2006. Effluent profile of commercially used low-phosphorus fish feeds. Environ. Pollut., 140: 95-101. https://doi.org/10.1016/j.envpol.2005.06.020
Sumico, T., K. Isaka, H. Ikuta, Y.L. Saiki & T. Yokota. 2006. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. J. Biosci. Bioeng., 102: 346-351. https://doi.org/10.1263/jbb.102.346
Timmons, M.B., J.M. Ebeling, F.W. Wheaton, S.T. Summerfelt & B.J. Vinci. 2001. Recirculating Aquaculture Systems. NRAC Publication no. 01-002. Cayuga Aqua Ventures, Ithaca, NY, 650 p.
Timmons, M.B. & J.M. Ebeling, 2007. Recirculating systems. Northeastern Regional Aquaculture Center, Ithaca, NY.
Van Rijn, J. 2013. Waste treatment in recirculating aquaculture systems. Aquacult. Eng., 53: 49-56. https://doi.org/10.1016/j.aquaeng.2012.11.010
Wang, B.-B., Q. Chang, D.-C. Peng, Y.-P. Hou, H.- J. Li & L.-Y. Pei. 2014. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: Separation and characterization of exopolymers between floc level and microcolony level. Water Res., 64: 53-60. https://doi.org/10.1016/j.watres.2014.07.003
Wilson, C.A., S.M. Murthy, Y. Fang & J.T. Novak. 2008. The effect of temperature on the performance and stability of thermophilic anaerobic digestion. Water Sci. Technol., 57: 297-304. https://doi.org/10.2166/wst.2008.027
Wu, H., D. Yank, Q. Zhou & A. Song. 2009. The effect of pH on anaerobic fermentation of primary sludge at room temperature. J. Hazard. Mater., 175: 196-201. https://doi.org/10.1016/j.jhazmat.2009.06.146
Zhang, X., H. Spangers & J.B. van Lier. 2013. Potentials and limitations of biomethane and phosphorus recovery from sludges of brackish/ marine aquaculture recirculation systems: A review. J. Environ. Manage., 131: 44-54. https://doi.org/10.1016/j.jenvman.2013.09.016
Zuthi, M.F.R., W.S. Guo, H.H. Ngo, L.D. Nghiem & F.I. Hai. 2013. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes. Bioresource Technol., 139: 363-374. https://doi.org/10.1016/j.biortech.2013.04.038
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Juan P. González -Hermoso, Emilio Peña -Messina, Anselmo Miranda -Baeza, Luis R. Martínez -Córdoba, María T. Gutiérrez -Wing, Manuel Segovia

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.