Efecto de cuatro pretratamientos en el flujo y balance del nitrógeno y el fósforo en efluentes de un sistema de recirculación acuícola

Autores/as

  • Juan P. González -Hermoso
  • Emilio Peña -Messina
  • Anselmo Miranda -Baeza
  • Luis R. Martí­nez -Córdoba
  • Marí­a T. Gutiérrez -Wing
  • Manuel Segovia CICESE

DOI:

https://doi.org/10.37543/oceanides.v31i2.183

Palabras clave:

Lodos, pretratamientos, balance de masas, sistemas de recirculación acuícola

Resumen

Los efluentes de un tipo de cultivo intensivo como los Sistemas de Recirculación Acuícola (SRA)
presentan altas concentraciones de lodos que pueden llegar a ser una fuente de contaminación si no son tratados y dispuestos apropiadamente. La digestión anaeróbica es usualmente empleada para llevar a cabo la degradación de los lodos. Los pretratamientos previos a la digestión anaeróbica pueden mejorar la degradación de los lodos, así
como reducir la carga de nitrógeno y fósforo a través de la actividad microbiana. Este estudio examinó el efecto de cuatro pretratamientos (biológico, químico, mecánico y térmico) en el flujo y balance de masas de N y P de efluentes de un SRA durante un periodo de 7 meses a temperatura ambiente. En cada mes se llevó a cabo un  experimento de 15 días. Todos los pretratamientos a excepción del químico, eliminaron nitrógeno (térmico 29.78%, biológico 36.75%, control 42.25%, mecánico 49.46%, químico -7.68%). Todos los pretratamientos produjeron fósforo (químico 1.96%, mecánico 16.07%, térmico 24.37%, biológico 32.39%, control 58.60%). Nuestros resultados indican que el pretratamiento mecánico fue el más efectivo para eliminar N. En contraste, ninguno de los pretratamientos redujo la concentración de fósforo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

APHA 1989. Standard methods for the examination of water and wastewater, 17th edition. Washington, D.C.

Appels, L., J. Baeyens, J. Degreve & R. Dewil. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energ. Combust., 34: 756-781. https://doi.org/10.1016/j.pecs.2008.06.002

Appels, L., J. Degreve, B. Van del Bruggen, J. Van Impe & R. Dewil. 2010. Influence of low temperature thermal pretreatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technol., 101: 5743-5748. https://doi.org/10.1016/j.biortech.2010.02.068

Audrey, P., L. Julien, D. Christophe & L. Patrick. 2011. Sludge disintegration during heat treatment at low temperature: A better understanding of involved mechanisms with a multiparametric approach. Biochem. Eng. J., 54: 178-184. https://doi.org/10.1016/j.bej.2011.02.016

Ariunbaatar, J., A. Panico, G. Esposito, F. Pirozzi, & P.N.L. Lens. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energ., 123: 143-156. https://doi.org/10.1016/j.apenergy.2014.02.035

Boltz, D. F. 1958. Colorimetric determination of nonmetals. John Wiley & Sons, New York, NY. 372 p.

Bougrier, C., C. Albasi, J.P. Delgenes & H. Carrere. 2006. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Process., 45: 711-718. https://doi.org/10.1016/j.cep.2006.02.005

Carballa, M., C. Duran & A. Hospido. 2011. Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ. Sci. Technol., 45: 10306-10314. https://doi.org/10.1021/es201866u

Carrere, H., C. Dumas, A. Battimelli, D.J. Batstone, J.P. Delgenes, J.P. Steyer & I. Ferrer. 2010. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater., 183: 1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129

Chavez-Crooker, P. & J. Obreque-Contreras. 2010. Bioremediation of Aquaculture wastes. Curr. Opin. Biotech., 21: 313-317. https://doi.org/10.1016/j.copbio.2010.04.001

Chen, S.L., D.E. Coffin, & R.F. Malone. 1997. Sludge production and management for recirculating aquaculture systems. J. World Aquacult. Soc., 28: 303-315. https://doi.org/10.1111/j.1749-7345.1997.tb00278.x

Conroy, J. & M. Couturier. 2010. Dissolution of minerals during hydrolysis of fish waste solids. Aquaculture, 298: 220-225. https://doi.org/10.1016/j.aquaculture.2009.11.013

Eggeman, T. & R.T. Elanderb. 2005. Process and economic analysis of pretreatment technologies. Bioresource Technol., 96: 2019-2025. https://doi.org/10.1016/j.biortech.2005.01.017

Ennoun, H., B. Miladi, S. Zahedi-Díaz, L.A. Fernández-Guelfo, R. Solera, M. Hamdi & H. Bouallagui. 2016. Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial water activated Sludge. Bioresource Technol., 214: 184-191. https://doi.org/10.1016/j.biortech.2016.04.076

Estuardo, C., M.C. Marti, C. Huili Huiliñir, E.A. Lillo & M.R. von Bennewitz, 2008. Improvement of nitrate and nitrite reduction rates prediction. Electron. J. Biotech., 11: 10. https://doi.org/10.2225/vol11-issue3-fulltext-6

Ferrer, I., S. Ponsa, F. Vásquez & X. Font. 2008. Increasing biogas production by thermal (70oC) sludge pretreatment prior to thermophilic anaerobic digestion. Biochem. Eng. J., 42: 186-192. https://doi.org/10.1016/j.bej.2008.06.020

Fontenot, Q., C. Bonvillain, M. Kilgen & R. Boopathy. 2007. Effects of temperature, salinity and carbon: nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater. Bioresource Technol., 90: 1700-1703. https://doi.org/10.1016/j.biortech.2006.07.031

Food and Agriculture Organization of the United Nations. 2014. The state of world fisheries and aquaculture. 230 p.

Frison N., E. Katsou, S. Malamis & F. Fatone. 2016. A novel scheme for denitrifying biological phosphorus removal via nitrite from nutrientrich anaerobic effluents in a sort-cut sequencing batch reactor. J. Chem. Technol. Biot., 91:190-197. https://doi.org/10.1002/jctb.4561

García, J.L., B.K.C. Patel & B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6: 205-226. https://doi.org/10.1006/anae.2000.0345

Gavalla, H.N., I. Angelidaki & B.K. Ahring. 2003. Kinetics and modeling of anaerobic digestion process. Adv. Biochem. Eng. Biotechnol., 81: 58-93. https://doi.org/10.1007/3-540-45839-5_3

Ge, H., P.D. Jensen & D.J. Batstone. 2010. Pre-treatment mechanisms during thermophilic-mesophilic temperature phased anaerobic digestion of primary sludge. Water Res., 44: 123-130. https://doi.org/10.1016/j.watres.2009.09.005

Hall, A.G., E.M. Hallerman & G.S. Libey. 2002. Comparative analysis of performance of three biofilter designs in recirculating aquaculture systems. In: Proceedings of the 4th International Conference on Recirculating Aquaculture. https://doi.org/10.21061/ijra.v3i1.1457

Hiraoka, M., N. Takeda, S. Sakai & A. Yasuda. 1985. Highly efficient anaerobic digestion with thermal pre-treatment. Water Sci. Technol., 17:529-539. https://doi.org/10.2166/wst.1985.0157

Jin, H., Y. Jin, R.B. Mahar, Z. Wang & Y. Nie. 2008. Effects and model of alkaline waste activated sludge treatment. Bioresource Technol., 99: 5140-5144. https://doi.org/10.1016/j.biortech.2007.09.019

Kim, M., D.-W. Han & D.-J. Kim. 2015. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment. Bioresource Technol., 190: 522-528. https://doi.org/10.1016/j.biortech.2015.01.106

Lahav, O., J. Bar Massada, D. Yackoubov, R. Zelikson, N. Mozes, Y. Ta & S. Tarre. 2009. Quantification of anammox activity in a denitrification reactor for a recirculating aquaculture system. Aquaculture, 288: 76-82. https://doi.org/10.1016/j.aquaculture.2008.11.020

Lee, D., M. Kim & J. Chung. 2007. Relationship between solid retention time and phosphorus removal in anaerobic-intermittent aeration process. J. Biosci. Bioeng., 103: 338-344. https://doi.org/10.1263/jbb.103.338

Li, H., Y. Jin, R.B. Mahar, Z. Wang & Y. Nie. 2008. Effect and model of alkaline waste activated sludge treatment. Bioresource Technol., 99: 5140-5144. https://doi.org/10.1016/j.biortech.2007.09.019

Li, Y.Y. & T. Noike. 1992. Upgrading of anaerobic digestion of waste activated sludge by thermal pre-treatment. Water Sci. Technol., 26: 857-866. https://doi.org/10.2166/wst.1992.0466

Liao, X., H. Li, Y. Zhang, C. Liu & Q. Chen. 2016. Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pretreatment. Int. Biodeter. Biodegr., 106: 141-149. https://doi.org/10.1016/j.ibiod.2015.10.023

Liu, W., G. Luo, H. Tan, & D. Sun. 2016. Effects of Sludge retention time on water quality and bioflocs yield, nutritional composition, apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor. Aquacultural Eng., 72/73: 58-64. https://doi.org/10.1016/j.aquaeng.2016.04.002

Mariscal-Lagarda, M.M. & F. Páez-Osuna. 2014. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum MIll) with low salinity groundwater: A short communication. Aquacult. Eng., 58: 107-112. https://doi.org/10.1016/j.aquaeng.2013.12.003

Mirzoyan, N., S. Parnes, A. Singer, Y. Tal, K. Soers & A. Gross. 2008. Quality of brackish aquaculture sludge and its sustainability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquaculture, 279: 35-41. https://doi.org/10.1016/j.aquaculture.2008.04.008

Mirzoyan, N., Y. Tal & A. Gross. 2010. Anaerobic digestion of sludge from intensive recirculating aquaculture systems: Review. Aquaculture, 306: 1-6. https://doi.org/10.1016/j.aquaculture.2010.05.028

Mouneimme, A.H., H. Carrere, N. Bernet, & J.P. Delgenes. 2003. Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresource Technol., 90: 89-94. https://doi.org/10.1016/S0960-8524(03)00091-9

Nah, I.W., Y.W. Kang, K.-Y. Hwang & W.-K. Song. 2000. Mechanical pretreatment of waste activated sludge for anaerobic digestion process. Water Res., 34: 2362-2368. https://doi.org/10.1016/S0043-1354(99)00361-9

Neyens E. & J. Baeyens. 2003. A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater., 98: 51-67. https://doi.org/10.1016/S0304-3894(02)00320-5

Novak, J.T., M.E. Sadler & S.N. Murthy. 2003. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res., 37: 3136-3144. https://doi.org/10.1016/S0043-1354(03)00171-4

Nydahl, F., 1976. On the optimum conditions for the reduction of nitrate to nitrite by cadmium. Talanta, 23: 349-357. https://doi.org/10.1016/0039-9140(76)80047-1

Obaja, D., S. Mace, J. Costa, C. Sans & J. Mata-Álvarez. 2003. Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technol., 87: 103-111. https://doi.org/10.1016/S0960-8524(02)00229-8

Park, S.K., H.M. Jang, J.H. Ha, J.M. Park. 2014. Sequential sludge digestion after diverse pretreatment conditions: Sludge removal, methane production and microbial community changes. Bioresource Technol., 162: 331-340. https://doi.org/10.1016/j.biortech.2014.03.152

Pitts, M.E. & J.H. Adams. 1987. Method for total nitrogen in freshwater and wastewater samples. 849-858, In: Proceedings of the AWWA 1986 Water Technology Conference: Advances in water analysis and treatment. American Water Works Association. Denver, CO.

Puigagut, J., H. Angles, F. Chazarenc & Y. Comeau. 2011. Decreasing phosphorus discharge in fish farm ponds by treating the sludge generated with sludge drying beds. Aquaculture, 318: 7-14. https://doi.org/10.1016/j.aquaculture.2011.04.025

Rustian, E., J.P. Delgenes, N. Bernet & R. Moletta. 1997. Nitrate reduction in acidogenic reactor: influence of wastewater COD/N-NO 3 ratio on denitrification and acidogenic activity. Environmental Technol., 18: 309-315. https://doi.org/10.1080/09593330.1997.9618500

SAS. 2002. SAS system for Windows. SAS Institute Inc., Cary, NC. USA.

Seviour, T., B.C. Donose, M. Pijuan & Z. Juan. 2010. Purification and conformational analysis of a key exopolysaccharide component of mixed culture aerobic sludge granules. Environ. Sci. Technol., 44: 4729-4734. https://doi.org/10.1021/es100362b

Sharrer, M., K. Rishel, A. Taylor, B.J. Vinci & S.T. Summerfelt. 2010. The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresource Technol., 101: 6630-6641. https://doi.org/10.1016/j.biortech.2010.03.101

Sletten, O. & C.M. Bach. 1961. Modified stannous chloride reagent for orthophosphate determination. Am. Water Work. Assoc., 53: 1031-1033. https://doi.org/10.1002/j.1551-8833.1961.tb00742.x

Solórzano, L. 1969. Determination of ammonia in natural waters by the phenolhyochlorite method. Limnol. Oceanogr., 14: 751-754.

Solórzano, L. & J.H. Sharp. 1980. Determination of total dissolved nitrogen in natural waters. Limnol. Oceanogr., 25: 751-754. https://doi.org/10.4319/lo.1980.25.4.0751

Steward, N.T., G.D. Boardman & L.A. Helfrich. 2006. Characterization of nutrient leaching rates from settled rainbow trout (Oncorhynchus mykiss) sludge. Aquacult. Eng., 35: 191-198. https://doi.org/10.1016/j.aquaeng.2006.01.004

Sugiura, S.H., D.D. Marchant, T. Wiggins & R.P. Ferraris. 2006. Effluent profile of commercially used low-phosphorus fish feeds. Environ. Pollut., 140: 95-101. https://doi.org/10.1016/j.envpol.2005.06.020

Sumico, T., K. Isaka, H. Ikuta, Y.L. Saiki & T. Yokota. 2006. Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. J. Biosci. Bioeng., 102: 346-351. https://doi.org/10.1263/jbb.102.346

Timmons, M.B., J.M. Ebeling, F.W. Wheaton, S.T. Summerfelt & B.J. Vinci. 2001. Recirculating Aquaculture Systems. NRAC Publication no. 01-002. Cayuga Aqua Ventures, Ithaca, NY, 650 p.

Timmons, M.B. & J.M. Ebeling, 2007. Recirculating systems. Northeastern Regional Aquaculture Center, Ithaca, NY.

Van Rijn, J. 2013. Waste treatment in recirculating aquaculture systems. Aquacult. Eng., 53: 49-56. https://doi.org/10.1016/j.aquaeng.2012.11.010

Wang, B.-B., Q. Chang, D.-C. Peng, Y.-P. Hou, H.- J. Li & L.-Y. Pei. 2014. A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: Separation and characterization of exopolymers between floc level and microcolony level. Water Res., 64: 53-60. https://doi.org/10.1016/j.watres.2014.07.003

Wilson, C.A., S.M. Murthy, Y. Fang & J.T. Novak. 2008. The effect of temperature on the performance and stability of thermophilic anaerobic digestion. Water Sci. Technol., 57: 297-304. https://doi.org/10.2166/wst.2008.027

Wu, H., D. Yank, Q. Zhou & A. Song. 2009. The effect of pH on anaerobic fermentation of primary sludge at room temperature. J. Hazard. Mater., 175: 196-201. https://doi.org/10.1016/j.jhazmat.2009.06.146

Zhang, X., H. Spangers & J.B. van Lier. 2013. Potentials and limitations of biomethane and phosphorus recovery from sludges of brackish/ marine aquaculture recirculation systems: A review. J. Environ. Manage., 131: 44-54. https://doi.org/10.1016/j.jenvman.2013.09.016

Zuthi, M.F.R., W.S. Guo, H.H. Ngo, L.D. Nghiem & F.I. Hai. 2013. Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes. Bioresource Technol., 139: 363-374. https://doi.org/10.1016/j.biortech.2013.04.038

Descargas

Publicado

2016-12-09

Cómo citar

González -Hermoso, J. P., Peña -Messina, E., Miranda -Baeza, A., Martí­nez -Córdoba, L. R., Gutiérrez -Wing, M. T., & Segovia, M. (2016). Efecto de cuatro pretratamientos en el flujo y balance del nitrógeno y el fósforo en efluentes de un sistema de recirculación acuícola. CICIMAR Oceánides, 31(2), 21–34. https://doi.org/10.37543/oceanides.v31i2.183

Número

Sección

Artículos