Distribution of functional groups of phytoplankton in the euphotic zone during an annual cycle in Bahía de La Paz, Gulf of California

Authors

  • Gerardo Verdugo Dí­az CICIMAR
  • Ismael Gárate -Lizarraga

DOI:

https://doi.org/10.37543/oceanides.v33i1.227

Keywords:

Annual cycle, euphotic zone, irradiance, functional groups, microphytoplankton, Gulf of California

Abstract

Irradiance plays an important role in the distribution of functional groups of phytoplankton in the euphotic zone. To characterize the environmental variability of the euphotic zone (in three levels of irradiance, 100, 10 and 1%) and its influence on the functional groups, the latter were studied. Similarly, changes in the structure of the microphytoplankton functional groups were determined as a response to the variability of hydrological conditions. Thus, results of the vertical distribution of microphytoplankton at three light quantity levels during an annual cycle (June 2000-June 2001) at a fixed sampling site in Bahí­a de La Paz (24° 21.284 N; 110° 26.294 W) are presented. A total of 62 taxa were identified: 45 diatom species (72.58%), 11 dinoflagellate species (17.74%), 3 species of silicoflagellates (4.83%), 1 ciliate species (1.61%), 1 cyanophyte (1.61%), and 1 coccolithophorid (1.61%). A higher abundance of diatoms was observed in the uppermost surface layer, while dinoflagellates were more abundant at the 10% irradiance level of the euphotic zone lower limit; silicoflagellates, although in a lesser magnitude, associated with the limit of the euphotic zone. Diatoms usually dominated, followed by dinoflagellates; this occurred at all three light quantity levels of the euphotic zone through the year. Environmental conditions during the warm period (>23°C) favored dinoflagellates; during the water-column homogenization period (December-April) conditions favored heterotrophic Protoperidinium species inhabiting the layers above or below the thermocline. However, the integration of species assemblages during the period of the homogenous water column was not clear due to mixing of different phytoplankton assemblages coming from different depth levels.

Downloads

Download data is not yet available.

References

Anderson, T.R. 2005. Plankton functional type modelling: running before we can walk? Jour. Plank. Res., 27: 1073-1081. https://doi.org/10.1093/plankt/fbi076

Balech, E. 1988. Los Dinoflagelados del Atlántico Sudoccidental. Pub. Especial Inst. Español de Oceanogr., No. 1, 88. 310 p.

Bortolini, J.C., L.C. Rodrigues, S. Jati & S. Train. 2014. Phytoplankton functional and morphological groups as indicators of environmental variability in a lateral channel of the Upper Paraná River floodplain. Acta Limnol. Bras., 26(1): 98-108. https://doi.org/10.1590/S2179-975X2014000100011

Brown, J., A. Colling, D. Park, J. Phillips, D. Rhothery & J. Wrigth. 1989. Light and sound in seawater. In: Bearman, G. (De) Seawater: its composition, properties and behavior. 165 p.

Calijuri, M.C., A.C.A. Dos Santos & S. Jati. 2002. Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, S.P.-Brazil). Jour. Plank. Res., 24: 617-634. https://doi.org/10.1093/plankt/24.7.617

Chang, F.H., J. Zeldis, M. Gall & J. hall. 2003. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. Jour. Plank. Res., 25: 737-758. https://doi.org/10.1093/plankt/25.7.737

Cupp, E.E. 1943. Marine plankton diatoms of the West Coast of North-America. Bull. Scripps Inst. Oceanogr., 5: 1-238.

Dobs, F.C. 1981. Community ecology of a shallow subtidal sand flat, whit emphasis on sediment reworking by Clymenella torquata (Polychaeta: Maldenidae). M.Sc. Thesis. University of Connecticut. Storrs. Connecticut. 145 p.

Fogg, G.E. 1986. Picoplankton. Proceedings of the Royal Society of London 228: 1-30. https://doi.org/10.1098/rspb.1986.0037

Gárate-Lizárraga, I., D.A. Siqueiros-Beltrones & C.H. Lechuga-Devéze. 1990. Estructura de las asociaciones microfitoplanctónicas de la región central del Golfo de California en el otoño de 1986. Cienc. Mar., 16(3): 131-153.

Gárate-Lizárraga, I., M.L., Hernández-Orozco, C.J. Band-Schmidt & G. Serrano-Casillas. 2001. Red tides along the coasts of Baja California Sur, Mexico (1984 to 2001). Oceánides, 16(2): 127-134.

Gárate-Lizárraga, I., C. J. Band-Schmidt, F. Aguirre-Baena, & T. Grayeb del Alamo, 2009. A multi-species microalgae bloom in Bahía de La Paz, Gulf of California, México (June 2008). CICIMAR Oceánides, 24(1), 15-29. https://doi.org/10.37543/oceanides.v24i1.50

Gilmartin, M. & N. Revelante., 1978. The phytoplankton characteristics of the barrier island lagoons of the Gulf of California. Est. Coast. Mar. Sci., 7: 29-42. https://doi.org/10.1016/0302-3524(78)90055-5

Goericke, R. 2011. The size structure of marine phytoplankton communities-What are the rules? CalCOFI Reports. 52; 198-204.

Hasle, G.R., 1978. Using the inverted microscope. 191-196, In: Sournia A. (ed.). Phytoplankton manual. UNESCO. París.

Hasle, G.R. & E.E. Syvertsen. 1997. Marine diatoms. 1-385, In: Tomas C.R. (Ed.). Identifying marine phytoplankton pp. Academic Press, San Diego. https://doi.org/10.1016/B978-012693018-4/50004-5

Hustedt, F. 1930. Bacillariophyta. En: Pasher, A. Die Susswasser-Flora Mitteleuropas. Otto Koeltz Science Pub. W. Germany 466 p.

Hustedt, F. 1959. Die Kieselalgen Deutschlands, Oesterreichs under Schweiz. En: L. Raberhorst (ed.), Kryptogamen-Flora. Band VII, P. I-II. Johnson Rep. Co., N.Y., 845 p.

Jiménez-Illescas A.R., M. Obeso-Nieblas & D.A. Salas de León. 1997. Oceanografía física de la Bahía de La Paz, B.C.S. 31-41, En: Urbán-Ramírez, J. & M. Ramírez-Rodríguez (eds). La Bahía de La Paz investigación y conservación. U.A.B.C.S.

Kwiatkowski, L., A. Yool, J.I. Allen, T.R. Anderson, R. Barciela, E.T. Buitenhuis, M. Butenschön, C. Enright, P.R. Halloran, C. Le Quéré, L. de Mora, Racault, B. Sinha, I.J. Totterdell & P.M. Cox. 2014. iMarNet: an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework, Biogeosciences, 11: 7291-7304. https://doi.org/10.5194/bg-11-7291-2014

Li, W.K.W. 2002. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature, 419:154-157. https://doi.org/10.1038/nature00994

Licea-Durán, S. 1974. Sistemática y distribución de diatomeas de la Laguna de Agiabampo, Son./ Sin., México. An. Centro Cienc. del Mar y Limnol. U.N.A.M., 1: 99-157.

López-Cortés, D.J., Gárate-Lizárraga, I., Bustillos-Guzmán, J.J. & F.E. Hernández-Sandoval. 2008. Blooms of Myrionecta rubra in Bahía de La Paz, Gulf of California, during early summer of 2005. CICIMAR Oceánides, 23(1, 2): 1-10. https://doi.org/10.37543/oceanides.v23i1-2.39

Margalef, R. 1978. Life-Forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1: 493-509.

Martínez-López, A. & I. Gárate-Lizárraga. 1994. Cantidad y calidad de la materia orgánica particulada en Bahía Concepción en la temporada de reproducción de la almeja catarina Argopecten circularis (Sowerby, 1835). Cienc. Mar., 20(3): 301-320.

Martínez-López A., R. Cervantes-Duarte, A. Reyes-Salinas & J.E. Valdez-Holguín. 2001. Cambio estacional de clorofila a en la Bahía de La Paz, B.C.S., México. Hidrobiológica, 11(1): 45-52.

McIntire, C.D. & W.S. Overton. 1971. Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology, 52: 758-777. https://doi.org/10.2307/1936024

Macintyre, J.G., J.J. Cullen & A.D. Cembella. 1997. Vertical migration, nutrition and toxicity in the dinoflagellate Alexandrium tamarense. Mar. Ecol. Prog. Ser., 148: 201-216. https://doi.org/10.3354/meps148201

Moore, L.R., R. Goericke & S.W. Chisholm. 1995 Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser., 116: 259-275. https://doi.org/10.3354/meps116259

Murray, D. & H. Schrader. 1983. Distribution of silicoflagellates in plankton and core type samples from the Gulf of California. Mar. Micropaleont., 7: 517-539. https://doi.org/10.1016/0377-8398(83)90013-0

Nienhuis, J.H. 1982. Phytoplankton characteristics in the southern part of the Gulf of California. CIBCASIO, 6: 152-168.

Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia, 249: 135-156. https://doi.org/10.1007/978-94-017-1919-3_14

Parsons, T.R., Y. Maita & C.M. Lalli. 1984. A manual the chemical y biological methods for seawater analysis. Pergamon Press. 173 p.

Peña, M.A., M.R. Lewis & W.G. Harrison. 1990. Primary productivity and size structure of phytoplankton biomass on a transect bb the equator at 135°W in the Pacific Ocean. DeepSea Res., 37: 295-315. https://doi.org/10.1016/0198-0149(90)90129-J

Pesantes, F. 1978. Dinoflagelados del Golfo de Guayaquil. Bol. Inst. Oceanogr. de la Armada. INOCAR, 2(2): 1-98.

Pielou, E.C. 1969. An introduction to mathematical ecology. Wiley-Interscience, New York. 286 p.

Reynolds, C.S. 1997.Vegetation Processes in the Pelagic: A Model for Ecosystem Theory Oldendorf/Luhe Ecology Institute. 371 p.

Riegman, R., W. Stolte, & A.A.M. Noordeloos. 1998. A model system approach to biological climate forcing: The example of Emiliania huxleyi. Final Report Subproject (b): Physiology. NIOZ-Rapport 1998-8, NIOZ, The Netherlands.

Schrader, H., N. Pisias & G. Cheng. 1986. Seasonal variation of silicoflagellates in phytoplankton and varved sediments in the Gulf of California. Mar. Micropaleontol., 10: 207-233. https://doi.org/10.1016/0377-8398(86)90030-7

Schiller. J. 1933. Dinoflagellates (Peridineae) in monogrphischer Behandlung teil 2. In: Rabenhorsts Kryptogamen-Flora, Leipzig. 598 p.

Sharples, J., C.M. Moore, T.P. Rippeth, P.M. Holligan, D.J. Hydes, N.R. Fisher & H. Simpson. 2001. Phytoplankton distribution and survival in the thermocline. Limnol. Oceanogr., 46(3): 486-496. https://doi.org/10.4319/lo.2001.46.3.0486

Signoret, M. & H. Santoyo. 1980. Aspectos ecológicos del plancton de la Bahía de La Paz, Baja California sur. An. Centro Cienc. del Mar y Limnol., 7(2): 217-248.

Steidinger, K.A. & K. Tangen. 1997. Dinoflagellates, 387-584, In: Tomas, C.R. (Ed.) Identifying marine phytoplankton. Academic Press: San Diego. https://doi.org/10.1016/B978-012693018-4/50005-7

Simpson, J.H. & J.R. Hunter. 1974. Fronts in the Irish Sea. Nature, 250: 404-406. https://doi.org/10.1038/250404a0

Sundström, B.G. 1986. The marine diatom genus Rhizosolenia. A new approach to the taxonomy. PhD thesis, Lund Univ., Sweden, 245 p.

Taylor, F.J.R. 1976. Dinoflagellates from the International Indian Ocean Exhibition. A report on material collected by the R. VF. "Anton Bruun" 1963-1964. Bib. Bot., 132: 1-134.

Valiela, I. 1995. Marine ecological processes. Springer-Verlag. New York, U.S.A. 546 p. https://doi.org/10.1007/978-1-4757-4125-4

Verdugo-Díaz, G., A. Martínez-López & I. Gárate-Lizárraga. 2010. Ecological indicators of the phytoplankton community structure in Bahía Concepción, Mexico. CICIMAR,-Oceánides, 25(2): 95-102. https://doi.org/10.37543/oceanides.v25i2.85

Verdugo-Díaz, G., A. Martínez-López, G. Gaxiola-Castro & J.E. Valdez-Holguín. 2012. Phytoplankton photosynthetic parameters from the Gulf of California southern region. Rev. Biól. Mar. y Oceanol., 47(3) 527-535. https://doi.org/10.4067/S0718-19572012000300014

Verdugo-Díaz, G., A. Martínez-López, M.M. Villegas-Aguilera & G. Gaxiola-Castro. 2014. Producción primaria y eficiencia fotosintética en Cuenca Alfonso, Bahía de La Paz, Golfo de California, México. Rev. Biól. Mar. y Oceanol., 49(3): 527-536. https://doi.org/10.4067/S0718-19572014000300009

Ward, B.A., M. Schartau, A. Oschlies, A.P. Martin, M.J. Follows & T.R. Anderson. 2013. When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites, Prog. Oceanogr., 116: 49-65. https://doi.org/10.1016/j.pocean.2013.06.002

Weithoff, G., N. Walz & U. Gaedke. 2001. The intermediate disturbance hypothesis-species diversity or functional diversity. Jour. Plank. Res., 23(10): 1147-1155. https://doi.org/10.1093/plankt/23.10.1147

Published

2018-05-25

How to Cite

Verdugo Dí­az, G., & Gárate -Lizarraga, I. (2018). Distribution of functional groups of phytoplankton in the euphotic zone during an annual cycle in Bahía de La Paz, Gulf of California. CICIMAR Oceánides, 33(1), 47–61. https://doi.org/10.37543/oceanides.v33i1.227

Issue

Section

Articles