Implications of the depth of the euphotic zone and compensation irradiance on primary productivity in Cuenca Alfonso, BCS, Mexico.

Authors

  • Gerardo Verdugo Dí­az CICIMAR
  • Aida Martinez- Lopez
  • Francisco Javier Gómez- Ochoa

DOI:

https://doi.org/10.37543/oceanides.v36i1-2.258

Keywords:

compensation depth, primary productivity, chlorophyll-a, photosynthetically active radiation

Abstract

The euphotic zone of marine ecosystems has been defined as the layer between the water surface and the depth to which 1% of solar irradiance penetrates. However, it has been proposed that this should be extended to 0.1% to include phytoplanktonic communities adapted to low irradiances that contribute significantly to primary productivity. Sampling was conducted during April, May, September, and November, 2016, in Cuenca Alfonso at depths of 100, 33, 3, and 0.1% of active photosynthetic radiation, and at the standard depth of 150 m. CTD casts were performed and samples were collected to estimate chlorophyll-a concentrations and primary productivity. A mixed layer was observed at less than 16 m in April, May, and September that increased to 48 m in November. The highest chlorophyll-a concentrations were recorded at 33 and 3% and in one case at the 0.1% level. The microphytoplanktonic fraction concentration of chlorophyll had values that ranged from undetectable to 0.084 mg m-3, while the picophytoplanktonic fraction measured between 0.012 and 0.33 mg m-3. Microphytoplanktonic primary productivity varied from 0.25 to 0.41 mg C m-3 h-1 (scored values) and 22.39-41.69 mg C m-2 h-1 (integrated values). The picophytoplanktonic fraction varied from 0.25-0.34 mg C m-3 h-1 to 19.92-34.44 mg C m-2 h-1. The concentration of chlorophyll-a was significantly greater in the picophytoplanktonic fraction than in the microphytoplanktonic fraction (p<0.05); but was not significant in primary productivity (p=0.05). We conclude that the depth of the euphotic zone directly influences the productive capacity of the ecosystem, and propose deepening the zone’s profundity to at least 0.1% of surface irradiance since this could mean an increase of as much as 30% in total productivity.

 

Downloads

Download data is not yet available.

References

Banse, K. 2004. Should we continue to use the 1% light depth convention for estimating the compensation depth of phytoplankton for another 70 years? Limnoogy and Oceanography, 13 (3): 49–52. https://doi.org/10.1002/lob.200413349.

Brown, J., A. Colling, D. Park, J. Phillips, D. Rhothery & J. Wrigth. 1989. Light and sound in seawater. In: Bearman, G. (Ed). Seawater: its composition, properties and behavior, 165 pp. https://doi.org/10.1016/B978-075063715-2/50006-X

Cervantes-Duarte, R., G. Verdugo-Díaz & J.E. Valdez-Holguín. 2005. Modelo estacional de producción primaria estimada mediante fluorescencia natural en una región costera del Golfo de California, México. Hidrobiológica, 15 (1): 79-87.

Chisholm, S.W. 1992. Phytoplankton Size, 213-237, In: Falkowski, P.G., Woodhead, A.D., & Vivirito, K. (Eds). Primary Productivity and Biogeochemical Cycles in the Sea. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_12, 213–237.

Cloern, J.E. 2007. Habitat Connectivity and Ecosystem Productivity: Implications from a Simple Model. The american naturalist, 169 (1): 21-33. https://doi.org/10.2307/4122257

Cloern, J.E., B.E. Cole, R.L.J. Wong & A.E. Alpine. 1985. Temporal dynamics of estuarine phytoplankton: a case study of San Francisco Bay. Hydrobiologia, 29: 153-176. https://doi.org/10.1007/BF00048693

Cole, B.E. & J.E. Cloern. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progres Series, 36: 299-305. doi: 10.3354/meps036299

Cruz-Orozco, R., P. Tojo-García, L. Godínez-Horta & E.H. Nava-Sánchez. 1989. Topografía, hidrología y sedimentos de los márgenes de la Laguna de La Paz, B.C.S. Revista de Investigacion Cienifica., UABCS, 1: 3-15.

Cruz-Orozco, R., C. Martínez-Noriega & Y.A. Mendoza-Maravillas. 1996. Batimetría y sedimentos de la Bahía de La Paz, B.C.S. CICIMAR Oceánides, 11 (1): 21-27.

Ducklow, H.W & D.K. Steinberg. 2001. Upper ocean carbon export and the biological pump. Oceanography, 14 (4): 50-58. https://doi.org/10.5670/oceanog.2001.06

Estrada, M. & D. Blasco. (1985). Phytoplankton assemblages in coastal upwelling areas. Simposio internacional sobre las áreas de afloramiento más importantes del Oeste Africano (Cabo Blanco y Benguela). Insituto de Investigaciones Pesqueras., Barcelona, 1: 379-102.

Falkowsky, P.G., Z. Dubinsky & K. Wyman. 1985. Growth-irradiance relationships in Phytoplankton. Topografía, hidrología y sedimentos de los márgenes de la Laguna de La Paz. Limnoogy and Oceanography, 30 (2): 311-321. https://doi.org/10.4319/lo.1985.30.2.0311

Geider, R.J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: Implications for physiology and growth of phytoplankton. News Phytoogist Fundation, 106 (1): 1-34.

Gómez-Ocampo, E., R. Durazo, G. Gaxiola-Castro, M. De la Cruz-Orozco & R. Sosa-Ávalos. 2017. Effects of the interannual variability of water column stratification on phytoplankton production and biomass in the northern zone off Baja California. Ciencias Marinas, 43 (2): 109–122. https://doi.org/10.7773/cm.v43i2.2759

Gran, H. H., & T. Braarud. 1935. A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine. Journal of the Biological Board of Canada. 1 (5): 279- 467.

Hakspiel-Segura, C. 2014. Rutas y procesos fisiológicos del ciclo del nitrógeno en Cuenca Alfonso, Golfo de California. Tesis Doctoral. CICIMAR-IPN. 157 pp.

Kara, A. B., P. Rochford & H. Hurlburt 2000. An optimal definition for ocean mixed layer depth, Journal of Geophysical Research, 105 (C7): 16803–16821

Langdon, C. 1987. On the causes of interspecific differences in the growthirradiance relationship for phytoplankton. Part 1. A comparative study of the growth-irradiance relationship of three marine phytoplankton species: Skeletonema costatum, Olisthodiscus luteus and Gonyaulax tamarensis. Journao Plankton Research, 9 (3): 459-482. doi: 10.1093/plankt/9.3.459

Marquez-Artavia, A., L. Sánchez-Velasco, E.D. Barton, A. Paulmier, E. Santamaria-Del-Ángel & E. Beier. 2019. A suboxic chlorophyll-a máximum persists within the Pacific oxygen minimum zone off Mexico. Deep-Sea Research, II 1-8. https://doi.org/10.1016/j.dsr2.2019.104686

Marra, J. (2004). The compensation irradiance for phytoplankton in nature. Geophysical Research Letters, 310 (6): 1-6. doi:10.1029/2003GL018881.

Martínez-López A., R. Cervantes-Duarte, A. Reyes-Salinas & J.E. Valdez-Holguín. 2001. Cambio estacional de clorofila a en la Bahía de La Paz, B.C.S., México. Hidrobiológica, 11: 45-42.

Moore, L.R. 2010. Prochlorococcus and other photosynthetic picoplankton. In: encyclopedia of life sciences (ELS). John Wiley & Sons, Ltd, Chichester. doi:10.1002/9780470015902.a0022840.

Neale, P.J., A.L. Pritchard & R. Ihnacik. 2014. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus. Biogeosciences, 11: 2883-2895. doi:10.5194/bg-11-2883-2014

Nava-Sánchez E.H., D.S. Gorsline & A. Molina Cruz. 2001. The Baja California Peninsula borderland: structure and sedimentological characteristics. Sedimentary Geology, 144 (1): 63-82. https://doi.org/10.1016/S0037-0738(01)00135-X

Nixon, S.W. (1981). Freshwater inputs and estuarine productivity. 31-57, In: Cross, R., Williams, D. (Eds.) Proceedings of the National Symposium on Freshwater Inflow to Estuaries. U.S., Fish and Wildlife Service.

Nerger, L., & W. Gregg (2008). Improving assimilation of SeaWiFS data by the application of bias correction with a SEIK filter, Journal of Marine Systems, 73: 87–102. doi:10.1016/j.jmarsys.2007.09.007

Obeso-Nieblas, M., B. Shirasago-German, J.H. Gaviño-Rodríguez, E.L. Pérez-Lezama, H. Obeso-Huerta & A.R. Jiménez-Illescas. 2008. Variabilidad hidrográfica en Bahía de La Paz, Golfo de California, México (1995-2005). Revista de. Biología Marina y Oceanografía, 43: 559-567. http://dx.doi.org/10.4067/S0718-19572008000300015.

Otero-Ferrer, J.L., P. Cermeño, A. Bode, B. Fernández-Castro, J.M. Gasol, X.A.G. Morán & E. Mara. 2018. Factors controlling the community structure of picoplankton in contrasting marine environments. Biogeosciences, 15: 6199–6220. doi: 10.5194/bg-2018-211

Pardo1, M.A., N. Silverberg, D. Gendron; E. Beier & D.M. Palacios. Role of environmental seasonality in the turnover of a cetacean community in the southwestern Gulf of California.

Marine Ecology Progress Series, 487: 245–260. doi: 10.3354/meps10217

Platt, T. & S. Sathyendranath. 1988. Oceanic Primary Production: Estimation by Remote Sensing at Local and Regional Scales. Science, 23: 1613-1620. doi: 10.1126/science.241.4873.1613

Santana-Vega, Z., D.U. Hernández-Becerril, A.R. Morales-Blake, F. Varona-Cordero & M. Merino-Ibarra. 2018. Prokaryotic picoplankton distribution within the oxygen minimum zone of the central Mexican Pacific across environmental gradients. Brazilian Journal of Oceanography, 157-171. https://doi.org/10.1590/s1679-87592018004806602

Sathyendranath, S. & T. Platt. 2001. Primary production distribution. 2272-2277, In J.H. Steele (Ed). Encyclopedia of Ocean Sciences. https://doi.org/10.1006/rwos.2001.0204

Sokal, R.R. & Rohlf, F.J. 1969. Biometry. The principles and practice of Statistics in Biological Research. W.H. Freeman and Company. 859 pp.

Steemann-Nielsen, E. 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. ICES Journal of Marine Science, 18: 117–140. https://doi.org/10.1093/icesjms/18.2.117

Strickland, J.D. & T.R. Parsons. 1972. A practical handbook for the sea water analysis. Fisheries Research Board of Canada, Bulletin, 167. 328 pp.

Sverdrup H. 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer 18: 287–295.

Verdugo-Díaz G, M.O. Albañez-Lucero & R. Cervantes-Duarte. 2008. Estimación de la producción primaria durante otoño-invierno en la Bahía de La Paz, B.C.S. México. CICIMAR Oceánides, 23 (1-2): 39-43.

Verdugo-Díaz G., A. Martínez-López, G. Gaxiola-Castro & J.E. Valdez-Holguín. 2012. Phytoplankton photosynthetic parameters from the Gulf of California southern region. Revista de Biología Marina y Oceanografía, 47 (3): 527-535. http://dx.doi.org/10.4067/S0718-19572012000300014.

Verdugo-Díaz, G., A. Martínez-López, M.M. Villegas-Aguilera & G. Gaxiola-Castro. 2014. Primary production and photosynthetic efficiency in Alfonso Basin, La Paz Bay, Gulf of California, Mexico. Revista de Biología Marina y Oceanografía, 49 (3): 527-536. http://dx.doi.org/10.4067/S0718-19572014000300009.

Published

2021-12-31

How to Cite

Verdugo Dí­az, G., Martinez- Lopez, A., & Gómez- Ochoa, F. J. (2021). Implications of the depth of the euphotic zone and compensation irradiance on primary productivity in Cuenca Alfonso, BCS, Mexico. CICIMAR Oceánides, 36(1-2), 49–58. https://doi.org/10.37543/oceanides.v36i1-2.258

Issue

Section

Articles