Anticoagulant screening of marine algae from Mexico, and partial characterization of the active sulfated polysaccharide from Eisenia arborea.

Authors

  • M. Muñoz-Ochoa
  • J. I. Murillo-Alvarez
  • Y. E. Rodrí­guez-Montesinos
  • G. Hernández-Carmona
  • D. L. Arvizu-Higuera
  • J. Peralta-Cruz
  • J. Lizardi-Mendoza

DOI:

https://doi.org/10.37543/oceanides.v24i1.52

Keywords:

Seaweed anticoagulants, Baja California Sur, activated partial thromboplastin time, heparin, heterofucan, prothrombin time, sulfated polysaccharides

Abstract

The in vitro anticoagulant activity of 41 water extracts of various seaweeds from Baja California
Sur, Mexico was evaluated. In this study, nine extracts exhibited anticoagulant activity in the prothrombin time assay and 29 extracts were positive in the activated partial thromboplastin time assay. The water extract obtained at 25 °C from the brown seaweed Eisenia arborea was the most active in both assays, increasing the normal blood clotting-time over 300 s at 100 mg mL-1. The fractionation of this extract by anion exchange
chromatography yielded 3 fractions. Fraction 2 eluted with 1.0 M sodium chloride increased the clotting-time over 300 s in the activated partial-thromboplastin time assay at 5 mg mL-1, being more active than sodium heparin. Chemical and spectroscopic analysis of fraction 2 showed it to be a sulfated heterofucan composed of 56.2 % ± 0.1% of total sugars and 45 % of sulfates.The neutral sugar constituents of the active heterofucan was determined to be 47.6 % fucose, 35.5 % xylose and 16.9 % rhamnose, with substitutions of sulfate groups at C-4 (axial), and minor substitutions at C-2 and-or C-3. 

Downloads

Download data is not yet available.

References

Albuquerque, I. R. L., K. C. S. Queiroz, L. G. Alves, E. A. Santos, E. L. Leite & H. O. Rocha. 2004. Heterofucans from Dictyota menstrualis have anticoagulant activity. Braz. J. Med. Biol. Res., 37: 167-171. https://doi.org/10.1590/S0100-879X2004000200002

Areschoug, J. E. 1876. De tribus Laminarieis (Egregia Aresch., Eisenia Aresch., Nereocystis) et de Stephanocystide osmundacea (Turn.). Trevis. Observaciones praecursorias offert. Bot. Notiser, 65-73.

Berteau, O. & B. Mulloy. 2003 Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 13: 29R-40R. https://doi.org/10.1093/glycob/cwg058

Bilan, M. I., A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. E. Nifantiev & A. I. Usov. 2002. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohyd. Res., 337: 719-730. https://doi.org/10.1016/S0008-6215(02)00053-8

Blumenkrantz, N., & G. Asboe-Hansen. 1973. New method for quantitative determination of uronic acids. Anal. Biochem., 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1

Chevolot, L., A. Foucault, F. Chaubet, N. Kervarec, C. Sinquin, A. M. Fisher & C. Boisson-Vidal. 1999. Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohyd. Res., 319: 154-165. https://doi.org/10.1016/S0008-6215(99)00127-5

Chevolot, L., B. Mulloy, J. Ratiskol, A. Foucault & S. Colliec-Jouault. 2001. A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohyd. Res., 339: 2371-2380. https://doi.org/10.1016/S0008-6215(00)00314-1

Chizhov, O. A., A. Dell, H. R. Morris, S. M. Haslam, R. A. McDowell, A. S. Shashkov, N. E. Nifant'ev, E. A. Khatuntseva & A. I. Usov. 1999. A study of fucoidan from seaweed Chorda filum. Carbohyd. Res. 320: 108-119. https://doi.org/10.1016/S0008-6215(99)00148-2

Chong, B. H. 2003. Heparin-induced thrombocytopenia. J. Thromb. Haemost. 1: 1471-1478. https://doi.org/10.1046/j.1538-7836.2003.00270.x

De Lara Issasi, G. & S. Álvarez Hernández. 1994. Actividad biológica de las macroalgas marinas mexicanas. R. Soc. Mex. Hist. Nat. 45: 51-60.

Dische, Z. 1955. New color reaction for determination of sugars in polysaccharides. In D. Glick (Ed.) Methods of biochemical analysis 2 (pp. 331-358). New York, NY: Inter-Science Publisher, Inc.

Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebersand & F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356. https://doi.org/10.1021/ac60111a017

Farias, W. R. L., A. P. Valente, M. S. Pereira & P. A. S. Mourão. 2000. Structure and anticoagulant activity of sulfated galactans. J. Biol. Chem., 275: 29299-29307. https://doi.org/10.1074/jbc.M002422200

Haroun-Bouhedja, F., F. Lindenmeyer, H. Lu, C. Soria, J. Josefonvicz & C. Boisson-Vidal. 2002. In vitro effects of fucans on MDA-MB231 tumor cell adhesion and invasion. Anticancer Res., 22: 2285-2292.

Jurd, K. M., D. J. Rogers, G. Blunden & D. S. McLellan. 1995. Anticoagulant properties of sulfated polysaccharides and a proteoglycan from Codium fragile spp. atlanticum. J. Appl. Phycol., 7: 339-345. https://doi.org/10.1007/BF00003790

Lijour, Y., E. Gentric, E. Deslandes & J. Guezennec. 1994. Estimation of the sulfate content of hydrothermal vent bacterial polysaccharides by Fourier transform infrared spectroscopy. Anal. Biochem., 220: 244-248. https://doi.org/10.1006/abio.1994.1334

Marais, M. F. & J. P. Joseleau. 2001. A fucoidan fraction from Ascophyllum nodosum. Carbohyd. Res., 336: 155-159. https://doi.org/10.1016/S0008-6215(01)00257-9

Matsubara, K., Y. Matsuura, K. Hori & K. Miyazawa. 2000. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. J. Appl. Phycol., 12: 9-14.

Melo, F. R., M. S. Pereira, D. Foguel & P. A. S. Mourão. 2004. Antithrombin-mediated anticoagulant activity of sulfated polysaccharide: Different mechanisms heparine and sulfated galactans. J. Biol. Chem., 279: 20824-20835. https://doi.org/10.1074/jbc.M308688200

Murillo-Álvarez, J. I. & G. Hernández-Carmona. 2007. Monomer composition and sequence of sodium alginate extracted at pilot plant scale from three commercially important seaweeds from Mexico. J. Appl. Phycol., 19: 545-548. https://doi.org/10.1007/s10811-007-9168-5

Nishino, T. & T. Nagumo. 1991. The sulfate-content dependence of the anticoagulant activity of a fucan sulfate from the brown seaweed Ecklonia kurome. Carbohyd. Res., 214: 193-197. https://doi.org/10.1016/S0008-6215(00)90542-1

Nishino, T., & T. Nagumo. 1992. Anticoagulant and antithrombin activities of oversulfated fucans. Carbohyd. Res., 229: 355-362. https://doi.org/10.1016/S0008-6215(00)90581-0

Patankar, M. S., S. Oehninger, T. Barnett, R. L. Williams & G. F. Clark. 1993. A revised structure for fucoidan may explain some of its biological activities. J. Biol. Chem., 268: 21770-21776. https://doi.org/10.1016/S0021-9258(20)80609-7

Pereira, M. G., N. M. Benevides, M. R. Melo, A. P. Valente, F. R. Melo & P. A. S. Mourão. 2005. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohyd. Res., 340: 2015-2023. https://doi.org/10.1016/j.carres.2005.05.018

Pereira, M. S., F. R. Melo & P. A. S. Mourão. 2002. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans? Glycobiology, 12: 573-589. https://doi.org/10.1093/glycob/cwf077

Pereira, M. S., B. Mulloy & P. A. S. Mourão. 1999. Structure and anticoagulant activity of sulfated fucans. J. Biol. Chem., 274: 7656-7667. https://doi.org/10.1074/jbc.274.12.7656

Ronghua, H., D. Yumin & Y. Jianhong. 2003. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohyd. Polym., 52: 19-24. https://doi.org/10.1016/S0144-8617(02)00258-8

Sartori, C., D. S. Finch, B. Ralph & K. Gilding. 1997. Determination of the cation content of alginate thin films by ft-ir spectroscopy. Polymer., 38: 43-51. https://doi.org/10.1016/S0032-3861(96)00458-2

Schaeffer, D. J. & V. S. Krylov. 2000. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotox. Environ. Safe., 45: 208-227. https://doi.org/10.1006/eesa.1999.1862

Sem, S. R., A. K. Das, N. Banerji, A. K. Siddhanta, K. H. Mody, B. K. Ramavat, V. D. Chauhan, J. R. Vedasiromani & D. K. Ganguly. 1994. A new sulfated polysaccharide with potent blood anti-coagulant activity from the red seaweed Grateloupia indica. Int. J. Biol. Macromol., 16: 279-280. https://doi.org/10.1016/0141-8130(94)90034-5

Shanmugam, M. & K. H. Mody. 2000. Heparinoid-active sulfated polysaccharides from marine algae as potential blood anticoagulant agents. Current Sci. India., 79: 1672-1683.

Shanmugam, M., K. H. Mody, B. K. Ramavat, A. Sai Krishna Murthy & A. K. Siddhanta. 2002. Screening of Codiacean algae (Chlorophyta) of the Indian coast for blood anticoagulant activity. Indian J. Mar. Sci., 31: 33-38.

Silva, T. M. A., L. G. Alves, K. C. S. De Quiroz, M. G. L. Santos, C. T. Marques, S. F. Chavante, H. A. O. Rocha & E. L. Leite. 2005. Partial characterization and anticoagulant activity of heterofucan from the brown seaweed Padina gymnospora. Braz. J. Med. Biol. Res., 38: 523-533. https://doi.org/10.1590/S0100-879X2005000400005

Tako, M., E. Yoza & S. Tohma. 2000. Chemical characterization of acetyl fucoidan and alginate from commercially cultured Cladosiphon okamuranus. Bot. Mar., 43: 393-398. https://doi.org/10.1515/BOT.2000.040

Teixeira, M. M. & P. G. Hellewell. 1997. The effect of the selectin binding polysaccharide fucoidin on eosinophil recruitment in vivo. Brit. J. Pharmacol., 120: 1059-1066. https://doi.org/10.1038/sj.bjp.0701024

Uehara, T., M. Takeshita & M. Maeda. 1992. Studies on anticoagulant-active arabinan sulfates from the green alga, Codium latum. Carbohyd. Res., 235: 309-311. https://doi.org/10.1016/0008-6215(92)80100-F

Weitz, J. I. & M. Bates. 2005. New anticoagulants. J. Thromb. Haemost., 3: 1843-1853. https://doi.org/10.1111/j.1538-7836.2005.01374.x

Downloads

Published

2009-06-04

How to Cite

Muñoz-Ochoa, M., Murillo-Alvarez, J. I., Rodrí­guez-Montesinos, Y. E., Hernández-Carmona, G., Arvizu-Higuera, D. L., Peralta-Cruz, J., & Lizardi-Mendoza, J. (2009). Anticoagulant screening of marine algae from Mexico, and partial characterization of the active sulfated polysaccharide from Eisenia arborea. CICIMAR Oceánides, 24(1), 15–29. https://doi.org/10.37543/oceanides.v24i1.52

Issue

Section

Articles

Most read articles by the same author(s)