Potencial biotecnológico de las esponjas en la producción de nuevos fármacos: perspectivas y limitaciones.

Autores/as

  • R. N. íguila-Ramí­rez
  • C. J. Hernández-Guerrero
  • B. González-Acosta

DOI:

https://doi.org/10.37543/oceanides.v26i2.101

Palabras clave:

Biotecnología, esponja, bacteria, fármacos

Resumen

La búsqueda de productos naturales con actividad farmacológica a partir de esponjas marinas tiene
un gran potencial debido a las interesantes actividades que algunos compuestos presentan en ensayos clínicos, principalmente en la búsqueda de compuestos anticancerígenos y antivirales. Sin embargo, también existen diversas problemáticas que pueden frenar el desarrollo de un nuevo compuesto. Por lo que en esta revisión se pretende dar un panorama general de las perspectivas y limitantes que se presentan en la búsqueda de nuevos compuestos a partir de esponjas en el medio natural, en el establecimiento de cultivos de esponjas, de primorfos y células madre como una alternativa o el aislamiento de bacterias asociadas a ellas que produzcan dichos metabolitos con la finalidad de realizar modificaciones genéticas que permitan una producción biotecnológica. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aoki, S., Y. Yoshioka, Y. Miyamoto, K. Higuchi, A. Setiawan, N. Murakami, Z.S. Chen, T. Sumizawa, S. I. Akiyama & M. Kobayashi M. 1998. Agosterol A, a novel polyhydroxylated sterol acetate reversing multidrug resistance from a marine sponge Spongia sp. Tetrahedron Lett., 39:6303-6306. https://doi.org/10.1016/S0040-4039(98)01336-7

Armstrong, E., J.D. McKenzie, G.T. Goldsworthy. 1999. Aquaculture of sponges on scallops for natural products research and antifouling. J Biotechnol., 70:163-74. https://doi.org/10.1016/S0168-1656(99)00069-3

Battershill, C.N. & M.J. Page. 1996. Sponge aquaculture for drug production. Aquac Update, 5-6.

Bewley, C.A., N.D. Holland & D.J. Faulkner. 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia, 52: 716-722.

Bernan, V.S., M. Greenstein & W.M. Maiese. 1997. Microorganisms as source of new natural products, 57-90. En: Neidleman, S. & A. Laskin (Eds.) Advances in applied microbiology. Academic Press, 254 p.

Bergmann, W., Feeney R.J. 1950. The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc., 72:2809-2810. https://doi.org/10.1021/ja01162a543

Bhakuni, D.S. & D.S. Rawat. 2005. Bioactive Marine Natural Products. Springer, New York, USA, and Anamaya Publisher, New Delhi, India. ISBN: 1-4020-3472-5. 400 p.

Blunt, J.W., B.R. Copp, M.H.G. Munro, P.T. Northcote & M.R. Prinsep. 2003. Marine natural products. Nat. Prod. Rep., 20: 1-48.

Blunt, J.W. & Munro M.H.G. 2007. Dictionary of Marine Natural Products with CD-ROM. Chapman and Hall/CRC Press, Boca Raton, FL. cxix + 2415 pp. ISBN 978-0-8493-8216-1.

Blunt, J.W., B.R. Coop, W.P. Hu, M.H.G. Munro, P.T. Northcote & M.R. Prinsep. 2009. Marine natural products. Nat. Prod. Rep., 26(2):170-244.

Brümmer, F. & M. Nickel. 2003. Sustainable use of marine resources: Cultivation of sponges, 143-162. En: Müller, W.E.G. (Ed.). Sponges (Porifera), Progress in molecular and submolecular Biology - Marine Molecular Biotechnology. 258 p.

Carballo, J. L. 2002. Los organismos marinos y las moléculas bioactivas. Perspectiva actual, 83-115. En: A. J. Laborda y Secretariado de Publicaciones Universidad de León (Eds). El mar como fuente de moléculas bioactivas. León, España. 233 p. ISBN 84- 7719-796-2.

Carballo, J., B. Yañez, E. Zubía, M.J. Ortega & C. Vega. 2009. Culture of explants from the sponge Mycale Cecilia to obtain bioactive mycalazal-type metabolites. Mar. Biotech.

Cowan, D, Q. Meyer, W. Stafford, S. Muyanga, R. Cameron & P. Wittwer. 2005. Metagenomic gene discovery: past, present and future. Trends Biotechnol., 23(6):321-329.

De Caralt, S., M.J. Uriz & R.H. Wijffels 2007a. Vertical transmission and successive location of symbiotic bacteria during embryo development and larva formation in Corticium candelabrum (Porifera: Demospongiae). J. Mar. Biol. Assoc. U.K., 87(6):1693-1699.

De Caralt S., H. Otjens, M.J. Uriz & R.H. Wijffels. 2007b. Cultivation of sponge larvae: settlement, survival, and growth of juveniles. Mar Biotechnol., 9(5):592-605.

De Caralt S., M.J. Uriz & R.H. Wjiffels. 2007c. Cell culture from sponges: pluripotency and immortality. TRENDS in Biotechnology, 25(10): 467-471.

De Caralt, S., J. Sánchez Fontela, M.J. Uriz & R. Wijffels. 2010. In Situ Aquaculture Methods for Dysidea avara (Demospongiae, Porifera) in the Northwestern Mediterranean. Mer. Drugs, 8:1731-1742. https://doi.org/10.3390/md8061731

De Rosa, S., S. De Caro, G. Tommonaro, K. Slantchev, K. Stefanov & S. Popov. 2001. Development in a primary cell culture of the marine sponge Ircinia muscarum and analysis of the polar compounds. Mar. Biotechnol., 3:281-286. https://doi.org/10.1007/s10126-001-0001-x

De Voogd, N.J. 2007. The mariculture potential of the indonesian reef-dwelling sponge Callyspongia (Euplacella): growth, survival and bioactive compounds. Aquaculture, 262: 54-64. https://doi.org/10.1016/j.aquaculture.2006.09.028

Donia, M. & M.T. Hamann, 2003. Marine natural products and their potential applications as anti infective agents. Lancet Infect. Dis., 3: 338-348.

Duckworth, A.R., C.N. Battershill & P.R Bergquist. 1997. Influence of explants procedures and environmental factors on culture success of three sponges. Aquaculture, 156: 251-267.

Duckworth, A.R., C.N. Battershill, D.R. Schiel & P.R Bergquist. 1999. Farming sponges for the production of the bioactive metabolites. Memoirs of Queensland Museum, 44: 155- 159.

Duckworth, A.R. & C.N.Battershill. 2003. Developing farming structures for production of biologically active sponge metabolites. Aquaculture, 217: 139-156

Duckworth, A.R. 2009. Farming sponges to supply bioactive metabolites and bath sponges: A review. Mar. Biotechnol., 11: 669-679.

Faulkner, D.J. 1997. Marine Natural Products.Nat. Prod. Rep., 14: 259-302.

Faulkner, D.J. 2000. Marine natural products.Nat. Prod. Rep., 17: 7-55.

Faulkner, D.J. 2002. Marine natural products.Nat. Prod. Rep., 19: 1-48.

Faulkner, D.J, M.K Harper, M.G. Haygood, C.E. Salomon & E.W. Schmidt. 2000. Symbiotic bacteria in sponges: sources of bioactive substances, 107-119. En: Fusetani N. (Ed.). Drugs from the Sea, Basel: Karger. ISBN: 978-3-8055-7098-5. 158 p.

Friedrich, A.B., I. Fischer, P. Proksch, J. Hacker, U. Hentschel. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol., 38:105-113. https://doi.org/10.1111/j.1574-6941.2001.tb00888.x

Fry, W. G. 1971. The biology of larvae of Ophiliataspongia seriata from two North Wales populations. En: Crisp D. J. (Ed.). Proceedings of the Fourth European Marine Biology Symposium. Cambridge University Press, Cambridge.

Fukuoka, K., T. Yamagishi, T. Ichihara, S. Nakaike, K. Iguchi, Y. Yamada, H. Fukumoto, T. Yoneda, K. Samata, H. Ikeya, K. Nanaumi, N. Hirayama, N. Narita, N. Saijo & K. Nishio. 2000. Mechanism of action of aragusterol a (YTA0040), a potent anti-tumor marine steroid targeting the G(1) phase of the cell cycle. Int. J. Cancer, 88(5):810-819.

Gad, S.C. 2005. Drug discovery handbook. Pharmaceutical Development Series. Wiley-Interscience. John Wiley & Sons, INC., Publication. 10: 1471 p.

Garson, M.J., J.E. Thompson, R.M. Larsen, C.N. Battershill, P.T. Murphy & P.R. Bergquist. 1992. Terpenes in sponge cell membranes: Cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids, 27(5): 378−388.

Gauvin, A., J. Smadja, M. Aknin, R. Faure & E.M. Gaydou. 2000. Isolation of bioactive 5 alpha, 8 alpha-epidioxy sterols from the marine sponge Luffariella cf. variabilis. Can. J. Chem., 78(7):986-992.

Guan, Y., R. Sakai, K.L. Rinehart & A.H.J. Wang. 1993. Molecular and cristal-structures of ecteinascidins potent antitumor compounds from the caribbean tunicate Ecteinascidina turbinata. J. Biolmol. Struct. Dynam., 10(5):793-818.

Hadas, E., M. Shpigel & M. Ilan. 2005. Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin-B mass production. Aquaculture, 244: 159 -169.

Handelsman, J, M. R Rondon, S. F. Brady, J. Clardy & R. M. Goodman. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol., 5:245-249. https://doi.org/10.1016/S1074-5521(98)90108-9

Handelsman, J., M. Liles, D. Mann, C. Riesenfeld & R.M. Goodman. 2002. Cloning the metagenome: culture independent access to the diversity and functions of the uncultivable microbial world, 241-255 En: Wren B. & N. Dorrel (Eds). Methods in Microbiology: Functional Genomics. Academic Press. Amsterdam, Holanda.

Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev., 68(4):669-685.

Haygood, M.G., E.W. Schmidt, S.K. Davidson & D.J. Faulkner. 1999. Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J. Mol. Microbiol. Biotech., 1:33-43. https://doi.org/10.1128/MMBR.68.4.669-685.2004

Hentschel, U., M. Schmid, M. Wagner, L. Fieseler, C. Gernert, J. Hacker. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol., 35:305-35312. https://doi.org/10.1111/j.1574-6941.2001.tb00816.x

Hentschel, U., L. Fieseler, A. Wehrl, C. Gernert, M. Steinert, J. Hacker, M. Horn. 2003. Microbial diversity of marine sponges, 59-88. En: Müller W.E.G. (Ed.). Sponges (Porifera). Springer, Berlin Heidelberg, Nueva York. 253 p.

Hentschel, U., K.M. Usher, M.W. Taylor. 2006. Marine sponges as microbial fermenters. FEMS Microbiol. Ecol., 55:167-177. https://doi.org/10.1111/j.1574-6941.2005.00046.x

Hildebrand, M., L.E. Waggoner, G.E. Lim, K.H. Sharp, C.P. Ridley & M.G. Haygood. 2004. Approaches to identify clone and express symbiont bioactive metabolite genes. Nat. Prod. Rep., 21(1): 122-142.

Hill, R.T. 2004. Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery, 177-190. En: Bull, A.T. (Ed.) Microbial diversity and bioprospecting. ASM Press, Washington. 496 p.

Hoffmann, F., H.T. Rapp, T. Zöller & J. Reitner. 2003. Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia barretti bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae). J. Biotech., 100: 109-118. https://doi.org/10.1016/S0168-1656(02)00258-4

Hopwood, D. 1999. Forty years of genetics with Streptomyces: from in vivo through in vitro to silico. Microbiology, 145:2183-2202. https://doi.org/10.1099/00221287-145-9-2183

Jiménez, J.C., M. Marfil, A. Francesch, C. Cuevas, M. Alvarez & F. Albericio. 2007. Productos naturales de origen marino. Investigación y Ciencia, 75-83.

Kaeberlein, T., K. Lewis & S.S Epstein. 2002. Isolating ''uncultivable'' microorganisms in pure culture in a simulated natural environment. Science, 296:1127-1129. https://doi.org/10.1126/science.1070633

Keller, M. & K. Zengler. 2004. Tapping into microbial diversity. Nature Reviews, 2: 141-150.

Kennedy, J. & C.R. Hutchinson. 1999. Nurturing nature: engineering new antibiotics. Nat. Biotechnol., 17:538-539. https://doi.org/10.1038/9839

Kobayashi, M. 2000. Search for biological active substances from marine sponges, 46-58, En: Fusetani N. (Ed.), Drugs from the Sea. Basel, Krager. ISBN: 3805570988. 158 p.

Koopmans, M., D. Martens & R.H. Wijffels. 2009. Towards commercial production of sponge medicines. Mar. Drugs, 7(4): 787- 802.

Koziol, C., R. Borojevic, R. Steffen & W.E.G. Müller. 1998. Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech. Ageing Dev., 100: 107-120. https://doi.org/10.1016/S0047-6374(97)00120-6

Li, Z., L. He & X. Miao. 2007. Cultivable bacterial community from south china sea sponge as reveales by DGGE fingerprinting and 16s rDNA phylogenetic analysis. Curr. Microbial., 55 (6):465-472.

Lorenz, P. & J. Eck. 2005. Metagenomics and industrial applications. Nat. Rev. Microbiol., 3(6):510-516.

Mayer, A.M.S. & K.R. Gustafson. 2008. Marine pharmacology in 2005-2006: Antitumor and cytotoxic compounds. Eur. J. Cancer., 44:2357-2387. https://doi.org/10.1016/j.ejca.2008.07.001

McDougald, D., S. Rice, D. Weichart & S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation. FEMS Microbiol. Ecol., 25: 1-9.

Mendola, D. 2003. Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol. Eng., 20:441-458. https://doi.org/10.1016/S1389-0344(03)00075-3

Miyamoto, T., K. Kodama, Y. Aramarki, R. Higuchi & R.W. van Soest. 2001. Orostanal, a novel abeo-sterol inducing apoptosis in leukemia cell from a marine sponge, Stelletta hiwasaensis. Tetrahedron Lett., 42: 6349-6351.

Moore, B.S. 1999. Biosynthesis of marine natural products: microorganisms and macroalgae. Nat. Prod. Rep., 16:653-674. https://doi.org/10.1039/a805873c

Müller, W.E., B. Diehl-Seifert, C. Sobel, A. Bechtold, Z. Kljajic & A. Dorn. 1986. Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. J. Histochem. Cytochem., 34:1687-1690. https://doi.org/10.1177/34.12.3782777

Müller, W.E.G., M. Wiens, R. Batel, R. Steffen, H.C. Schroder, R. Borojevic & M.R. Custodio. 1999. Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula. Mar. Ecol. Prog. Ser., 178:205-219. https://doi.org/10.3354/meps178205

Müller, W.E.G. M. Böhm, R. Batel, S. De Rosa, G. Tommonaro & I.M. Müller. 2000. Application of cell culture for the production of bioactive compounds from sponges: synthesis of avarol by primmorphs from Dysidea avara. J. Nat. Prod., 63: 1077-1081.

Müller W., V. Grebenjuk, G. Le Pennee, H. Schröder, F. Brummer, U. Hentschel, I. Muller & H. Breter. 2004. Sustainable production of bioactive compounds by sponges-cell culture and gene cluster approach: a review. Mar. Biotechnol., 12: 219-221.

Nocross, R.D. & I. Paterson. 1995. Total synthesis of bioactive marine macrolides. Chem. Rev., 95(6): 2041-2114.

Osinga, R., J. Tramper & R.H. Wijffels. 1998. Optimisation of the growth medium for an in vitro sponge culture. 5th International Sponge Symposium, 55 p.

Osinga, R., J. Tramper & R.H. Wijffels. 1999. Cultivation of marine sponges. Mar. Biotech., 1(6):509-532.

Osinga, R., E. Armstrong, J,G, Burgess, F. Hofmann, J. Reitner & G. Schumann-Kindel. 2001. Sponge-microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia, 461:55-62. https://doi.org/10.1023/A:1012717200362

Osinga, R., E. H. Belarbi, E.M. Grima, J. Tramper & R. H. Wijffels. 2003. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. J. Biotechnol., 100:141-146. https://doi.org/10.1016/S0168-1656(02)00257-2

Page, M.J., P.T. Northcote, V.L. Webb, S. Mackey & S.J. Handley. 2005. Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture, 250:256-269. https://doi.org/10.1016/j.aquaculture.2005.04.069

Pajic, I., Z. Kljajic, N. Dogovic, D. Sladic, Z. Juranic & M.J. Gasic. 2002. A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity. Comp. Biochem. Phys., 132: 213-221.

Paterson, I. & E. A. Anderson. 2005. The renaissance of natural products as drug candidates. Science, 310(5747):451-453. https://doi.org/10.1126/science.1116364

Pawlik, J.R., G. McFall, & S. Zea. 2002. Does the odor from sponges of the genus Ircinia protect them from fish predators? J. Chem. Ecol., 28:1103-1115. https://doi.org/10.1023/A:1016221415028

Piel, J. 2004. Metabolites from symbiotic bacteria. Nat. Prod. Rep., 21: 519-538.

Pomponi, S.A. & R. Willoughby. 1994. Sponge cell culture for production of bioactive me tabolites, 395-400. En: Van Soest, R.W.M., T.M.G Van Kempen & J.C. Braekman (Eds.). Sponges in Time and Space. Balkema, Rotterdam. 264 p.

Pomponi, S.A., R. Willoughby, M.E. Kaighn, A.E. Wright. 1997. Developments of techniques for in vitro production of bioactive natural products from marine sponges, 231-237. En: Maramorosch, K. & J. Mitsuhashi (Ed.). Invertebrate cell culture: Novel directions and biotechnology applications. Enfield, NH: Science Publishers. 296 p.

Pomponi, S.A. 1999. The bioprocess-technological potential of the sea. J. Biotechnol., 70: 5-13.

Pomponi, S.A. 2001. The oceans and human health: The discovery and development of marine-derived drugs. Oceanography, 14(1):78-87. https://doi.org/10.5670/oceanog.2001.53

Proksch, P., R.A. Edrada & R. Ebel. 2002. Drugs from the seas - current status and microbiological implications. Appl. Microbiol. Biotechnol., 59:125.

Pronzato, R., G. Bavestrello, C. Cerrano, G. Magnino, R. Manconi, J. Pantelis, A. Sarà & M. Sidri. 1999. Sponge farming in the Mediterranean Sea: new perspectives. Memoirs of the Queensland Museum, 44: 485-491.

Reiswig, H.M. 1974. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol., 14:231-249. https://doi.org/10.1016/0022-0981(74)90005-7

Richelle-Maurer, E., R. Gomez, J.C. Braekman, G. Van de Vyver, R.W.M. Van Soest, C. Devijver. 2003. Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida). J. Biotechnol., 100:169-176. https://doi.org/10.1016/S0168-1656(02)00251-1

Rinkevich, B., M. Ilan & R. Blisko. 1998. Further steps in the initiation of cell cultures from embryos and adult sponge colonies. In Vitro Cell. Dev. Biol Admin., 34: 753-756.

Rinkevich, B. 1999. Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J. Biotechnol., 70: 133-53. https://doi.org/10.1016/S0079-6352(99)80107-6 https://doi.org/10.1016/S0168-1656(99)00067-X

Rondon, M., M. Goodman & J. Handelsman. 1999. The earth's bounty: assessing and accessing the soil microbial diversity. Trends Biotechnol., 17: 403-409.

Salomon, C.E., N.A. Magarvey & D.H. Sherman. 2004. Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat. Prod. Rep., 21: 105-121.

https://doi.org/10.1002/chin.200420241 https://doi.org/10.1039/b301384g

Santavy, D.L., P. Willenz, R.R Colwell. 1990. Phenotypics study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbial., 56:1750-1762. https://doi.org/10.1128/aem.56.6.1750-1762.1990

Schmidt, E.W., A.Y. Obraztsova, S.K. Davidson, D.J. Faulkner & M.G. Haygood. 2000. Identification of the antifungal peptidecontaining symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, "Candidatus Entotheonella palauensis". Mar. Biol., 136:969-977. https://doi.org/10.1007/s002270000273

Schmeisser, C., H. Steele & W.R. Streit. 2007. Metagenomics, biotechnology with non-culturable microbes. App. Microbiol. Biotechnol., 75(5): 955-962.

Siebert, K., M. Busl, I. Asmus, J. Freund, A. Muscholl-Silberhorn & R. Wirth. 2004. Evaluation of methods for storage of marine macroorganisms with optimal recovery of bacteria. Appl. Environ. Microbiol., 70: 5912-5915.

Sipkema, D., R. van Wielink, A.A.M. van Lammeren, J. Tramper, R. Osinga & R.H. Wijffels. 2003. Primmorphs from seven marine sponges: formation and structure. J Biotechnol., 100: 127-39.

Sipkema, D. 2004. Cultivation of marine sponges: from sea to cell. Tesis de Doctorado. Wageningen University and Research Centre. Netherlands. 184 p.

Sipkema, D., M.C. Franssen, R. Osinga, J. Tramper & R.H. Wijffels. 2005. Marine sponges as pharmacy. Mar. Biotechnol., 7: 142-162.

Stein, J.L., T.L. Marsh, K.Y. Wu, H. Shizuya & E.F. DeLong. 1996. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol., 178(3):591-599. https://doi.org/10.1128/jb.178.3.591-599.1996

Stierle, A.C., J.H. Cardellina & F.L. Singleton. 1988. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experentia, 44: 1021.

Suenaga, H., T. Ohnuki & F. Miyazaki. 2007. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ. Microbiol., 9(9):2289-2297.

Thacker, R.W. 2005. Impacts of shading on sponge-Cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr. Comp. Biol., 45:369-376. https://doi.org/10.1093/icb/45.2.369

Thomas, T.R.A., D.P. Kavlekar & P.A. LokaBharathi. 2010. Marine drugs from spongemicrobe-association- A Review. Mar. Drugs, 8:1417-1468. https://doi.org/10.3390/md8041417

Thompson, J. E., P.T. Murphy, P.R. Bergquist & E.A. Evans. 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochem. Syst. Ecol., 15: 595-606.

Tiedje, J. M. & J. L. Stein. 1999. Microbial diversity: strategies for its recovery, 682-692. En: Demain, A. L. & J. E. Davies (Eds). Manual of Industrial Microbiology and Biotechnology. ASM Press. Washington, D.C. USA.

Torsvik, V. & L. �vre�s. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion Microbiol., 5:240-245. https://doi.org/10.1016/S1369-5274(02)00324-7

Uemura, D., K. Takahashi, T. Yamamoto, C. Katayama, J. Tanaka, Y. Okamura, Y. Hirata. 1985. J. Am. Chem. Soc., 107: 4796-4798.

Unson, M.D. & D.J. Faulkner. 1993. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia, 49: 349-353.

Unson, M.D, N.D. Holland & D.J. Faulkner. 1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol., 119: 1-11. https://doi.org/10.1007/BF00350100

Usher, K.M., J. Fromont, D.C. Sutton & S. Toze. 2004. The biogeography and phylogeny of unicellular cyanobacterial symbionts in sponges from Australia and the Mediterranean. Microb. Ecol., 48(2):167-177.

Vacelet, J. & C. Donadey. 1977. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol., 30:301-314

Van Lanen, S.G., & B. Shen. 2006. Microbial genomics for the improvement of natural product discovery. Curr. Opin. Microbiol., 9:252-260. https://doi.org/10.1016/j.mib.2006.04.002

Wang, G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol., 33: 545-551.

Watts, J.E.M., A.S. Huddleston-Anderson & E.M.H. Wellington. 1999. Bioprospecting, 631- 641. En Demain, A.L. & J.E. Davies (Eds.). Manual of Industrial Microbiology and Biotechnology. ASM Press. Washington, D.C. USA.

Webster, N.S. & R.T. Hill. 2001. The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alpha-Proteobacterium. Marine Biol., 138:843-851. https://doi.org/10.1007/s002270000503

White, J. D. & M. Kawasaki. 1992. Total synthesis of (+)-latrunculin A, an ichthyotoxic metabolite of the sponge Latrunculia magnifica and its C-15 epimer J. Org. Chem., 57: 5292-5300.

Wijffels, R.H., 2007. Potential of sponge and microalgae for marine biotechnology. Trends in Biotechnology, 26: 26-31.

Wilkesman, G. J. 2007. Simbiosis microbiana en esponjas marinas: Revisión de aspectos ecológicos. Ciencia, 15(2):182-192.

Zengler, K., G. Toledo, M. Rappé, J. Elkins, E. J. Mathur, J. M. Short & M. Séller. 2002. Cultivating the uncultured. Proceedings of the National Academy of Sciences USA, 99: 15681-15686.

Zhang, W., X. Zhang, X. Cao, J. Xu, Q. Zhao & X. Yu. 2003. Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley). J.of Biotech. 100(2):161-168.

Descargas

Publicado

2011-12-04

Cómo citar

íguila-Ramí­rez, R. N., Hernández-Guerrero, C. J., & González-Acosta, B. (2011). Potencial biotecnológico de las esponjas en la producción de nuevos fármacos: perspectivas y limitaciones. CICIMAR Oceánides, 26(2), 31–46. https://doi.org/10.37543/oceanides.v26i2.101

Número

Sección

Artículos

Artículos más leídos del mismo autor/a